
What mathematics does
programming teach? David Tall
explains here how structured
BASICs (such as the BASIC
available on the BBC
microcomputer) can be used to
teoch important ideas about
functions.

Powerful

mathe111atical

functions

H
ow will the computer be used in the
mathematical classroom of the future?

Clearly there is room for specially prepared
software for drawing graphs, illustrating
mathematical concepts, carrying out
mathematical investigations and for appropriate
programmed learning. But the computer itself,
with a suitable programming language and no
other software, is such a powerful mathematical
tool that it cannot fail to cal1Se significant
changes in the mathema�ics curriculum. One
only needs to consider the changes over the last
few years to begin to imagine what might
happen in the near future.

The computer revolution

Twenty years ago the study of four figure logarithm
tables was an essential part of mathematics. It was
quite impossible to perform many calculations without
them. Five-figure tables were considered a tour de
force. At that time the major support for numerical
calculations other than tables were expensive hand-

�

cranked mechanical calculators. I can remember
demonstrating these machines when I first arrived at
Warwick University fifteen years ago. Addition was
quite easy, but multiplication required quite nifty
techniques: moving along a place and cranking round
the correct number of times. It never really caught on
in schools, but many offices used them.

or cosine and most versions of BASIC allow the
definition of a function in the form

10 DEF FNV(x)=x*0.15

(This function multiplies the value of x by 0.15, giving
the calculation of V AT at 15%. For example, FNV(3)
equals 0.45.) Ten years ago the electronic calculator had become

widely distributed and provided the facility for
handling logarithms and other standard functions to To calculate the gradient of the graph of

an accuracy of eight digits and more. Books of tables f(x)=sinx+cosx from x to x+ h, requires the formula

(f(x +h)-f(x))!h.
fast became mildly interesting historical documents,
though they stayed in the examination syllabuses for a
while longer.

The arrival of the computer in the classroom will In most versions of BASIC one may type

1000 DEF FNf(x)=SIN(x)+COS(x)
change the scene even more dramatically in a way
which cannot be ignored. A simple example will show
the march of progress.

Consider the problem of adding up the first 100 and specify values such as

terms in the harmonic sequence:

1 + 112+ ... + 11100.

Before the calculator this would have been almost
impracticable. Logarithm tables or, better, a table of
reciprocals, could be used to calculate each term but
then they would have to be added up by hand or,
perhaps, by "hand-crank".

With the advent of the electronic calculator most of
these operations could be carried out on the machine. If
the calculator had a memory, a running total could be
kept and the other calculations might be effected using
a reciprocal button. But it would still take an
interminable time to add a hundred terms and a single
mis-keying of a number would invalidate the whole
job.

Programmable calculators made the matter far
easier by allowing an algorithm to be written to carry
out the sum. This might be similar to an algorithm for
a computer using BASIC:

LET S=O: FORN=1 TO 100 : S=S+1/N: NEXT N :
PRINT S

But this is still somewhat inflexible. To change the
number of terms or the formula for the term would
require a change in the program. The arrival of more
modern computers gives yet more flexibility through
the introduction of user-defined functions. In this
article we shall look at the flexibility of such functions
and how they provide a powerful facility for use in
mathematics.

User-def"med fwtctions

x=2:h=0.1

to obtain the gradient with:

PRINT (FNf(x+ h)-FNf(x))!h.

In some versions of BASIC the user-defined function
may not be active until the line has been executed in a
program. In others, including BBC BASIC, the
function becomes available as soon as the line has been
typed in, turning the computer into a kind of "super
calculator".

Evaluating expressions
One of the ideas that made BBC BASIC exciting when
it first appeared was the EV AL operator which is used
to evaluate expressions. Thus if

F$="SIN(x)+x j 2"

the numerical value of the expression may be
calculated for the current value of x using EV AL(F$).

This facility is now more widely available. It is
provided, for instance, in the versions of BASIC
available for the Nimbus and Spectrum and in BBC
CO MAL (some using the term V AL instead of EV AL).

Evaluation may be used to advantage in function
definitions. For instance,

1000 DEF FNf(x)=EV AL(F$)

followed by

F$="SIN(x)+COS(x)"

All computer languages worth their salt include causes the function FNf(x) to give the value of
> routines for calculating specific functions such as sine SIN(x)+COS(x). But now we can change the function

Spring 1986 MICROMATB

by changing the expression F$ whenever we wish. We
can type

x=2:h=0.1:F$="x j 2"

followed by

PRINT (FNf (x +h)-FN f(x))/h

to give the gradient of f(x)=x2 from x=2 to x+h=2.1.
This particular expression could be obtained directly

by the calculation

PRINT (2.1 j 2-2 j 2)/.1

but conceptual power of the function definition has
great advantages. Adding the lines

10 INPUT"f(x)="F$

20 h=.001

30 FORx=-4 TO 4 STEP 0.1

40 PRINT x, (FNf (X+h)-FNf(x))/h

50 NEXT

60 END

to the function definition gives a short program to
calculate a table of gradients for any function between
-4 to 4. This may then be used for drawing an
approximate graph of the derivative, either by hand
when students are becoming acquainted with the idea
or, later, as part of a more sophisticated graph-drawing
program that also draws numerical gradients.

Although a function definition only returns a single
value, it can have any number of input parameters
which may be numbers or strings. For instance one
may type a second definition

2000 DEF FNg (x,h)=(FNf (x+h)-FNf (x))/h

into a computer already having the definition of FNf
(x) and then

PRINT FNg (2, 0.1)

will give the gradient of the function from x=2 to
x=2.1. Typing

FOR n=1 TO 10:PRINT FNg (2,1/2An) :NEXT

will print out a sequence of values demonstrating the
limiting process concerned with calculating the
gradient from 2 to 2+h as h gets small.

Multi-line functions·

(including that on the BBC and Nimbus) allow multi
line definitions which fit naturally with more general
functions. For example, a function may be given by
different formulae over different parts of the domain,
say

f (x)=xsin(llx) for x =j(J,
f (0)=0

This may be programmed as a user-defined function
thus:

1000 DEF FNf(x):IF x=O THEN =0 ELSE
=x*SIN(1/x)

The idea easily extends to a number of different
formulae over different parts of the domain so that the
function given by

f(x)=1 for x<O

f(x)=j (1-x2) for 0::5x::;I
f(x)=O for x> 1

can be programmed as

4000 DEF FNf(x)

4010 IF x<O THEN = 1

4020 IF x> 1 THEN =0

4030 =SQR(1-x j 2)

or compactly in a single line as

4000 DEF FNf (x):IF x<O = 1 ELSE IF x> 1 =0 ELSE
=SQR(1-x j 2)

Conceptually this is extremely important in the
classroom where functions are often seen as being
necessarily given by a single formula. Thus f(x)=sinx
is a function, but

f(x)=sinx (for x<O) and f(x)=x2 (for x � 0)

is often considered, not as one function, but as two
separate functions stuck together. The fact that one
may write it as

2000 DEF FNf (x):IF x <0 THEN =SIN(x) ELSE
=x j 2

and find that the single command PRINT FNf(x) will
return appropriate function values for all x, positive or
negative, is conceptually a great leap forward.

Procedural Functions

' Early implementations of BASIC limited a function In general, a function can involve a number of
definition to a single line statement. Later versions ..,.. 21

MIC�OMATB Spring 1986

22

intermediate calculations. A powerful function
definition involving numbers and strings is:

10000 DEF FNsum (k,t$):s=O:FORn=1TOk:
s=s+ EVAL(t$):NEXT:=s

This is the definition of a function FNsum (k,t$) to add
up k terms of a series whoe nth term is the formula in
t$. It sets the initial value of s to zero and adds on the
evaluated expression t$ from n=1 to k. The final
expression "=s" ends up defining the function as the
value of s when all the calculations have been done.
For instance, if t$="1/n" then FNsum (100,"1/n")
evaluates the sum of the first 100 terms of the
harmonic series, effortlessly performing a calculation
that would have taken many hours away from the
computer.

This flexible little program can be used to sum the
first 1000 cubes as FNsum (1000, "n j 3"), or the even
numbers from 2 to a hundred by FNsum (50, "2*n"). By
taking appropriate expressions for t$ it can be used to
investigate the convergence or divergence of series.

The area under a graph y=f (x) from x=a to b may be
calculated approximately by dividing the interval into
n equal steps of width w=(b-a)/n. Using the mid
ordinate rule the height of the k-th strip is

h=f (a+(k-112)*w)

and the area of the strip is h*w.
If the expression for the function f(x) is contained in

a string f$ (e.g. f$="2*x") then total area
approximation from a to b using k strips can be
programmed as:

5000 DEF FNarea (f$,a,b,n)

5010 s=O:w=(b-a)/n

illustrate the limiting process as the values get closer
to the limiting value 2.

Alternatively, one might wish to think of the area
function in a different way, say as an approximation to
the definite integral of a function from a fixed point a
to a variable point x. This could be done by taking a=O
and calculating an appropriate number of strips from
a=O to x. The following definition does precisely this
by taking 5 steps in each interval and an extra 5 for
luck (to cover the case when x is nearly zero):

7000 DEF FNI(f$,x)

7010 n=INT (5* ABS(x))+5

7020 =FNarea (f$,0,x,n)

The command PRINT FNI("2*x",2) gives 4, FNI
("2*x",3) is 9, and so on. The function is designed to
work when x is negative too, so PRINT FNI("2*x",-2)
also gives 4.

Conceptually this is again a great advance. It shows
that the area function is indeed a function in the
mathematical sense of the term.

There is currently a persistent belief amongst most
students (and some teachers) that a "real answer" to a
problem must be given as a mathematical formula, not
a numerical process. This view is enshrined in the
opinion that it is acceptable for the solution of a
quadratic equation to be given by the standard
formula, but not by an algorithm that gives a
succession of better approximations. In industry,
numerical methods are often used, not only for the
pragmatic reason that they give a satisfactory result,
but also for the more important reason that there are
problems soluble by a numerical calculation which are
not amenable to an analytic solution.

5020 FORk=1TOn:x=a+(k-1!2)*w:s=s+w*EVAL Recursive Functions
(f$):NEXT:=s

For instance, the approximate area under the graph
f(x)=sinx from a=O to b=1r is given by

PRINT FNarea ("SIN(x)",O,PI,20)

This gives the result as 2.002 . . . (compared with the
value 2 found by antidifferentiation).

If one wished to concentrate on the area as a function
of the number of strips, then

6000 DEF FNa(n)=FNarea ("SIN(x)",O,PI,n)

gives a mathematical sequence, FNa(n), of
approximations to the area. For large numbers it does
take a long time to calculate, but commands such as

FOR n=200 TO 1000 STEP 200:PRINT FNa(n) :
NEXT

An oft-quoted example of a recursive function is the
factorial, defined using the interpretation:

"If n=O, n! is 1, but if not, n!=n*(n-1)!".

Provided that n is a non-negative integer, this gives a
definition of factorial n by working down,

n!=n*(n-1)!=n*(n-1)*(n-2)! . .

until we eventually reach 0! on the end of the product.
In BBC BASIC, the definition of "n factorial" is

2000 DEF FNfactorial(n)

2010 IF n<>INTn OR n<O ="not a whole number!"

2020 IF n=O =1 ELSE = n*FNfactorial (n-1)

Here the condition n<>INTn OR n<O excludes
numbers which are not integers or are negative. If n=O

Spring 1986 MICROMATB

the value is retumed as 1, or else the function is called
again and again until zero is reached.

The definition could be used in the FNsum function
mentioned earlier; for instance

PRINT FNsum(20,"1/FNfactorial (n-1)FN factorial
(n-1)")

would give the sum of the first 20 terms in the
expansion of e. To make a practical teaching point, one
could obtain a good approximation to the exponential
function using

3000 DEF FNexp(x)=FNsum(20,"x j (n-1)")

though computer languages have more efficient
methods of performing this particular calculation.

The Euclidean Algorithm
Another powerful recursive definition may be used to
work out the highest common factor of two integers
m,n. The method advocated by Euclid is a simple one:

If n=O then the hcf is m

otherwise divide n into m to get remainder r

the hcf of m,n is also the hcf of r,n

Now the process can be repeated with r,n replacing m,n
until a point is reached when the remainder is zero and
the hcf is found. For instance, to find the hcf of 366 and
842:

Divide 366 into 842 to give remainder 120.

The hcf is the hcf of 120 and 366.

Divide 120 into 366 to give remainder 6.

The hcf is the hcf of 6 and 120.

Divide 6 into 120 to give remainder 0.

The hcf is the hcf of 0 and 6, which is 6.

In BBC BASIC the definition is

10000 DEF FNhcf (m,n)

10010 IF INTm<>m OR INTn<>n THEN ="not
defined"

10020 IF m=O
(m MODn,n)

Typing

THEN

PRINT FNhcf (366,842)

=n ELSE =FNhcf

gives the hcf as 6. If you wish to see the calculations
unfolding during the recursive process, then just insert
a print statement into line 10020 by typing:

MICROMATB Spring 1986

10020 IF m=O THEN =n ELSE PRINT m,n :=FNhcf
(m MODn,n)

The command PRINT FNhcf(366,842) will then give
all the intermediate results before printing the highest
common factor.

Broadening the idea of a mathematical
function

The various facilities for user-defined functions will
modify our view on the nature of a mathematical
fuction. Set theory has (officially) broadened the
notion already, but there are still many students in
school and at university whose mental image of a
function is as a single formula. Without practical
experiences to the contrary this image may persist.
This article has suggested practical experiences which
may lead to the understanding of a function FNf(x) as a
single entity, even when it uses complicated
procedures to carry out the calculation.

How many students (and teachers) regard sinx as a
genuine function (although it is actually calculated by
a procedure using power series approximations) but
are not happy to regard a numerical solution of a
differential equation as a genuine function in the same
way? As we become more familiar with user-defined
functions this prejudice should be significantly
reduced, bringing the theoretical mathematics of the
classroom closer to the practical mathematics required
in the real world.

Looking into the future
It is possible that in the very near future computers
will have even more friendly user-defined functions
that allow them to be used as a "super-calculator" in
mathematics. BBC BASIC is regrettably flawed by the
fact that typing in new lines of a program destroys all
the current variables, seriously weakening its use in
immediate mode.

It should also be manifestly obvious that it is rather
a pain typing line numbers for each new function. A
better-designed language would allow us to type in
function definitions without line numbers and edit
multi-line definitions in the same way as in Logo.
There would be more power to our elbow if we could
just type

DEFINE f(x)=SIN(x)

and then use f(x) as a usual mathematical function. A
multi-line function could look something like this:

DEFINE f(x)

IF x <0 THEN·=-1

IF x= 0 THEN =0 23

24

ELS E =1

END D EF

(with carriage returns at the end of each line). It could
be later displayed by a single command, say DISPLAY
f, and edited by another, say EDIT f.

New versions of BASIC on the QL computer and the
Nimbus, and the implementation of COMAL on the
BBC still require line numbers, but improve on the
notation by allowing one to dispense with the FN
symbol. In such languages, once f(x) is defined, one
may write

PRINT (f(x +h)-f(x))/h ·

instead of the cumbersome

PRINT (FNf(x+ h)-FNf(x))/h.

Any other combination of user-defined functions f,g, ...
could be calculated, such as f(x)/g(x), f(g(x))
f(g(a(x)+ b(x))) and so on. The power would be
enormous.

One of the major issues that should be debated in
Micromath is the design of a computer language,
suitable for mathematics, which is immediately usable
by beginners, yet powerful for long term expert use.

Curriculum implications
The kind of power intimated in the previous sections is
irresistible. It will cause the computer to become
essential mathematical equipment and bring with it
the necessity to introduce mathematical aspects of
computing into the 16+ and A-level mathematics
syllabuses. To allow a proper integration of computers
into mathematics, the mathematics classroom of the
future will require the provision of a number of
computers to be used as and when they are
appropriate, without the necessity of advanced
booking, of wheeling equipment from one room to
another, or of using a specialized computer room. At
the moment lack of curriculum materials and the
expense of computers make this impracticable, but the
continuing improvement in computer specifications
and the dramatic reductions in cost make it a future
reality for which we must now make active
preparations. ,.

lhnrid 'l'aD

Mathematics Education Research Centre
Univenity of Warwick

	p1
	p2
	p3
	p4
	p5
	p6

