
What mathematics does 
programming teach? David Tall 
explains here how structured 
BASICs (such as the BASIC 
available on the BBC 
microcomputer) can be used to 
teoch important ideas about 
functions. 

Powerful 

mathe111atical 

functions 

H
ow will the computer be used in the 
mathematical classroom of the future? 

Clearly there is room for specially prepared 
software for drawing graphs, illustrating 
mathematical concepts, carrying out 
mathematical investigations and for appropriate 
programmed learning. But the computer itself, 
with a suitable programming language and no 
other software, is such a powerful mathematical 
tool that it cannot fail to cal1Se significant 
changes in the mathema�ics curriculum. One 
only needs to consider the changes over the last 
few years to begin to imagine what might 
happen in the near future. 

The computer revolution 

Twenty years ago the study of four figure logarithm 
tables was an essential part of mathematics. It was 
quite impossible to perform many calculations without 
them. Five-figure tables were considered a tour de 
force. At that time the major support for numerical 
calculations other than tables were expensive hand-
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cranked mechanical calculators. I can remember 
demonstrating these machines when I first arrived at 
Warwick University fifteen years ago. Addition was 
quite easy, but multiplication required quite nifty 
techniques: moving along a place and cranking round 
the correct number of times. It never really caught on 
in schools, but many offices used them. 

or cosine and most versions of BASIC allow the 
definition of a function in the form 

10 DEF FNV(x)=x*0.15 

(This function multiplies the value of x by 0.15, giving 
the calculation of V AT at 15%. For example, FNV(3) 
equals 0.45.) Ten years ago the electronic calculator had become 

widely distributed and provided the facility for 
handling logarithms and other standard functions to To calculate the gradient of the graph of 

an accuracy of eight digits and more. Books of tables f(x)=sinx+cosx from x to x+ h, requires the formula 

(f(x +h)-f(x) )!h. 
fast became mildly interesting historical documents, 
though they stayed in the examination syllabuses for a 
while longer. 

The arrival of the computer in the classroom will In most versions of BASIC one may type 

1000 DEF FNf(x)=SIN(x)+COS(x) 
change the scene even more dramatically in a way 
which cannot be ignored. A simple example will show 
the march of progress. 

Consider the problem of adding up the first 100 and specify values such as 

terms in the harmonic sequence: 

1 + 112+ ... + 11100. 

Before the calculator this would have been almost 
impracticable. Logarithm tables or, better, a table of 
reciprocals, could be used to calculate each term but 
then they would have to be added up by hand or, 
perhaps, by "hand-crank". 

With the advent of the electronic calculator most of 
these operations could be carried out on the machine. If 
the calculator had a memory, a running total could be 
kept and the other calculations might be effected using 
a reciprocal button. But it would still take an 
interminable time to add a hundred terms and a single 
mis-keying of a number would invalidate the whole 
job. 

Programmable calculators made the matter far 
easier by allowing an algorithm to be written to carry 
out the sum. This might be similar to an algorithm for 
a computer using BASIC: 

LET S=O: FORN=1 TO 100 : S=S+1/N: NEXT N :  
PRINT S 

But this is still somewhat inflexible. To change the 
number of terms or the formula for the term would 
require a change in the program. The arrival of more 
modern computers gives yet more flexibility through 
the introduction of user-defined functions. In this 
article we shall look at the flexibility of such functions 
and how they provide a powerful facility for use in 
mathematics. 

User-def"med fwtctions 

x=2:h=0.1 

to obtain the gradient with: 

PRINT (FNf(x+ h)-FNf(x))!h. 

In some versions of BASIC the user-defined function 
may not be active until the line has been executed in a 
program. In others, including BBC BASIC, the 
function becomes available as soon as the line has been 
typed in, turning the computer into a kind of "super­
calculator". 

Evaluating expressions 
One of the ideas that made BBC BASIC exciting when 
it first appeared was the EV AL operator which is used 
to evaluate expressions. Thus if 

F$="SIN(x)+x j 2" 

the numerical value of the expression may be 
calculated for the current value of x using EV AL(F$). 

This facility is now more widely available. It is 
provided, for instance, in the versions of BASIC 
available for the Nimbus and Spectrum and in BBC 
CO MAL (some using the term V AL instead of EV AL). 

Evaluation may be used to advantage in function 
definitions. For instance, 

1000 DEF FNf(x)=EV AL(F$) 

followed by 

F$="SIN(x)+COS(x)" 

All computer languages worth their salt include causes the function FNf(x) to give the value of 
> routines for calculating specific functions such as sine SIN(x)+COS(x). But now we can change the function 
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by changing the expression F$ whenever we wish. We 
can type 

x=2:h=0.1:F$="x j 2" 

followed by 

PRINT (FNf (x +h)-FN f(x))/h 

to give the gradient of f(x)=x2 from x=2 to x+h=2.1. 
This particular expression could be obtained directly 

by the calculation 

PRINT (2.1 j 2-2 j 2)/.1 

but conceptual power of the function definition has 
great advantages. Adding the lines 

10 INPUT"f(x)="F$ 

20 h=.001 

30 FORx=-4 TO 4 STEP 0.1 

40 PRINT x, (FNf (X+h)-FNf(x))/h 

50 NEXT 

60 END 

to the function definition gives a short program to 
calculate a table of gradients for any function between 
-4 to 4. This may then be used for drawing an 
approximate graph of the derivative, either by hand 
when students are becoming acquainted with the idea 
or, later, as part of a more sophisticated graph-drawing 
program that also draws numerical gradients. 

Although a function definition only returns a single 
value, it can have any number of input parameters 
which may be numbers or strings. For instance one 
may type a second definition 

2000 DEF FNg (x,h)=(FNf (x+h)-FNf (x))/h 

into a computer already having the definition of FNf 
(x) and then 

PRINT FNg (2, 0.1) 

will give the gradient of the function from x=2 to 
x=2.1. Typing 

FOR n=1 TO 10:PRINT FNg (2,1/2An) :NEXT 

will print out a sequence of values demonstrating the 
limiting process concerned with calculating the 
gradient from 2 to 2+h as h gets small. 

Multi-line functions· 

(including that on the BBC and Nimbus) allow multi­
line definitions which fit naturally with more general 
functions. For example, a function may be given by 
different formulae over different parts of the domain, 
say 

f (x)=xsin(llx) for x =j(J, 
f (0)=0 

This may be programmed as a user-defined function 
thus: 

1000 DEF FNf(x):IF x=O THEN =0 ELSE 
=x*SIN(1/x) 

The idea easily extends to a number of different 
formulae over different parts of the domain so that the 
function given by 

f(x)=1 for x<O 

f(x)=j (1-x2) for 0::5x::;I 
f(x)=O for x> 1 

can be programmed as 

4000 DEF FNf(x) 

4010 IF x<O THEN = 1 

4020 IF x> 1 THEN =0 

4030 =SQR(1-x j 2) 

or compactly in a single line as 

4000 DEF FNf (x):IF x<O = 1 ELSE IF x> 1 =0 ELSE 
=SQR(1-x j 2) 

Conceptually this is extremely important in the 
classroom where functions are often seen as being 
necessarily given by a single formula. Thus f(x)=sinx 
is a function, but 

f(x)=sinx (for x<O) and f(x)=x2 (for x � 0) 

is often considered, not as one function, but as two 
separate functions stuck together. The fact that one 
may write it as 

2000 DEF FNf (x):IF x <0 THEN =SIN(x) ELSE 
=x j 2  

and find that the single command PRINT FNf(x) will 
return appropriate function values for all x, positive or 
negative, is conceptually a great leap forward. 

Procedural Functions 

' Early implementations of BASIC limited a function In general, a function can involve a number of 
definition to a single line statement. Later versions ..,.. 21 
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intermediate calculations. A powerful function 
definition involving numbers and strings is: 

10000 DEF FNsum (k,t$):s=O:FORn=1TOk: 
s=s+ EVAL(t$):NEXT:=s 

This is the definition of a function FNsum (k,t$) to add 
up k terms of a series whoe nth term is the formula in 
t$. It sets the initial value of s to zero and adds on the 
evaluated expression t$ from n=1 to k. The final 
expression "=s" ends up defining the function as the 
value of s when all the calculations have been done. 
For instance, if t$="1/n" then FNsum (100,"1/n") 
evaluates the sum of the first 100 terms of the 
harmonic series, effortlessly performing a calculation 
that would have taken many hours away from the 
computer. 

This flexible little program can be used to sum the 
first 1000 cubes as FNsum (1000, "n j 3"), or the even 
numbers from 2 to a hundred by FNsum (50, "2*n"). By 
taking appropriate expressions for t$ it can be used to 
investigate the convergence or divergence of series. 

The area under a graph y=f (x) from x=a to b may be 
calculated approximately by dividing the interval into 
n equal steps of width w=(b-a)/n. Using the mid­
ordinate rule the height of the k-th strip is 

h=f (a+(k-112)*w) 

and the area of the strip is h*w. 
If the expression for the function f(x) is contained in 

a string f$ (e.g. f$="2*x") then total area 
approximation from a to b using k strips can be 
programmed as: 

5000 DEF FNarea (f$,a,b,n) 

5010 s=O:w=(b-a)/n 

illustrate the limiting process as the values get closer 
to the limiting value 2. 

Alternatively, one might wish to think of the area 
function in a different way, say as an approximation to 
the definite integral of a function from a fixed point a 
to a variable point x. This could be done by taking a=O 
and calculating an appropriate number of strips from 
a=O to x. The following definition does precisely this 
by taking 5 steps in each interval and an extra 5 for 
luck (to cover the case when x is nearly zero): 

7000 DEF FNI(f$,x) 

7010 n=INT (5* ABS(x))+5 

7020 =FNarea (f$,0,x,n) 

The command PRINT FNI("2*x",2) gives 4, FNI 
("2*x",3) is 9, and so on. The function is designed to 
work when x is negative too, so PRINT FNI("2*x",-2) 
also gives 4. 

Conceptually this is again a great advance. It shows 
that the area function is indeed a function in the 
mathematical sense of the term. 

There is currently a persistent belief amongst most 
students (and some teachers) that a "real answer" to a 
problem must be given as a mathematical formula, not 
a numerical process. This view is enshrined in the 
opinion that it is acceptable for the solution of a 
quadratic equation to be given by the standard 
formula, but not by an algorithm that gives a 
succession of better approximations. In industry, 
numerical methods are often used, not only for the 
pragmatic reason that they give a satisfactory result, 
but also for the more important reason that there are 
problems soluble by a numerical calculation which are 
not amenable to an analytic solution. 

5020 FORk=1TOn:x=a+(k-1!2)*w:s=s+w*EVAL Recursive Functions 
(f$):NEXT:=s 

For instance, the approximate area under the graph 
f(x)=sinx from a=O to b=1r is given by 

PRINT FNarea ("SIN(x)",O,PI,20) 

This gives the result as 2.002 . . .  (compared with the 
value 2 found by antidifferentiation). 

If one wished to concentrate on the area as a function 
of the number of strips, then 

6000 DEF FNa(n)=FNarea ("SIN(x)",O,PI,n) 

gives a mathematical sequence, FNa(n), of 
approximations to the area. For large numbers it does 
take a long time to calculate, but commands such as 

FOR n=200 TO 1000 STEP 200:PRINT FNa(n) : 
NEXT 

An oft-quoted example of a recursive function is the 
factorial, defined using the interpretation: 

"If n=O, n! is 1, but if not, n!=n*(n-1)!". 

Provided that n is a non-negative integer, this gives a 
definition of factorial n by working down, 

n!=n*(n-1)!=n*(n-1)*(n-2)! . .  

until we eventually reach 0! on the end of the product. 
In BBC BASIC, the definition of "n factorial" is 

2000 DEF FNfactorial(n) 

2010 IF n<>INTn OR n<O ="not a whole number!" 

2020 IF n=O =1 ELSE = n*FNfactorial (n-1) 

Here the condition n<>INTn OR n<O excludes 
numbers which are not integers or are negative. If n=O 
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the value is retumed as 1, or else the function is called 
again and again until zero is reached. 

The definition could be used in the FNsum function 
mentioned earlier; for instance 

PRINT FNsum(20,"1/FNfactorial (n-1)FN factorial 
(n-1)") 

would give the sum of the first 20 terms in the 
expansion of e. To make a practical teaching point, one 
could obtain a good approximation to the exponential 
function using 

3000 DEF FNexp(x)=FNsum(20,"x j (n-1)") 

though computer languages have more efficient 
methods of performing this particular calculation. 

The Euclidean Algorithm 
Another powerful recursive definition may be used to 
work out the highest common factor of two integers 
m,n. The method advocated by Euclid is a simple one: 

If n=O then the hcf is m 

otherwise divide n into m to get remainder r 

the hcf of m,n is also the hcf of r,n 

Now the process can be repeated with r,n replacing m,n 
until a point is reached when the remainder is zero and 
the hcf is found. For instance, to find the hcf of 366 and 
842: 

Divide 366 into 842 to give remainder 120. 

The hcf is the hcf of 120 and 366. 

Divide 120 into 366 to give remainder 6. 

The hcf is the hcf of 6 and 120. 

Divide 6 into 120 to give remainder 0. 

The hcf is the hcf of 0 and 6, which is 6. 

In BBC BASIC the definition is 

10000 DEF FNhcf (m,n) 

10010 IF INTm<>m OR INTn<>n THEN ="not 
defined" 

10020 IF m=O 
(m MODn,n) 

Typing 

THEN 

PRINT FNhcf (366,842) 

=n ELSE =FNhcf 

gives the hcf as 6. If you wish to see the calculations 
unfolding during the recursive process, then just insert 
a print statement into line 10020 by typing: 
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10020 IF m=O THEN =n ELSE PRINT m,n :=FNhcf 
(m MODn,n) 

The command PRINT FNhcf(366,842) will then give 
all the intermediate results before printing the highest 
common factor. 

Broadening the idea of a mathematical 
function 

The various facilities for user-defined functions will 
modify our view on the nature of a mathematical 
fuction. Set theory has (officially) broadened the 
notion already, but there are still many students in 
school and at university whose mental image of a 
function is as a single formula. Without practical 
experiences to the contrary this image may persist. 
This article has suggested practical experiences which 
may lead to the understanding of a function FNf(x) as a 
single entity, even when it uses complicated 
procedures to carry out the calculation. 

How many students (and teachers) regard sinx as a 
genuine function (although it is actually calculated by 
a procedure using power series approximations) but 
are not happy to regard a numerical solution of a 
differential equation as a genuine function in the same 
way? As we become more familiar with user-defined 
functions this prejudice should be significantly 
reduced, bringing the theoretical mathematics of the 
classroom closer to the practical mathematics required 
in the real world. 

Looking into the future 
It is possible that in the very near future computers 
will have even more friendly user-defined functions 
that allow them to be used as a "super-calculator" in 
mathematics. BBC BASIC is regrettably flawed by the 
fact that typing in new lines of a program destroys all 
the current variables, seriously weakening its use in 
immediate mode. 

It should also be manifestly obvious that it is rather 
a pain typing line numbers for each new function. A 
better-designed language would allow us to type in 
function definitions without line numbers and edit 
multi-line definitions in the same way as in Logo. 
There would be more power to our elbow if we could 
just type 

DEFINE f(x)=SIN(x) 

and then use f(x) as a usual mathematical function. A 
multi-line function could look something like this: 

DEFINE f(x) 

IF x <0 THEN·=-1 

IF x= 0 THEN =0 23 
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ELS E =1 

END D EF 

(with carriage returns at the end of each line). It could 
be later displayed by a single command, say DISPLAY 
f, and edited by another, say EDIT f. 

New versions of BASIC on the QL computer and the 
Nimbus, and the implementation of COMAL on the 
BBC still require line numbers, but improve on the 
notation by allowing one to dispense with the FN 
symbol. In such languages, once f(x) is defined, one 
may write 

PRINT (f(x +h)-f(x) )/h · 

instead of the cumbersome 

PRINT (FNf(x+ h)-FNf(x))/h. 

Any other combination of user-defined functions f,g, ... 
could be calculated, such as f(x)/g(x), f(g(x)) 
f(g(a(x)+ b(x))) and so on. The power would be 
enormous. 

One of the major issues that should be debated in 
Micromath is the design of a computer language, 
suitable for mathematics, which is immediately usable 
by beginners, yet powerful for long term expert use. 

Curriculum implications 
The kind of power intimated in the previous sections is 
irresistible. It will cause the computer to become 
essential mathematical equipment and bring with it 
the necessity to introduce mathematical aspects of 
computing into the 16+ and A-level mathematics 
syllabuses. To allow a proper integration of computers 
into mathematics, the mathematics classroom of the 
future will require the provision of a number of 
computers to be used as and when they are 
appropriate, without the necessity of advanced 
booking, of wheeling equipment from one room to 
another, or of using a specialized computer room. At 
the moment lack of curriculum materials and the 
expense of computers make this impracticable, but the 
continuing improvement in computer specifications 
and the dramatic reductions in cost make it a future 
reality for which we must now make active 
preparations. ,. 
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