
Published in Mathematics in School, 15, 2, pp. 33–37, (1986).

Drawing Implicit Functions

David Tall

Mathematics Education Research Centre
University of Warwick, Coventry CV4 7AL

A common problem is to translate an implicit relationship such as the
ellipse:

x2+2y2+4x+6y =5

into graphical form. By manipulating the algebra it is possible to solve for
y in terms of x (using positive and negative square roots) and then to plot
points (x,y) on the curve. But this approach does not generalise easily and
proves utterly impracticable for a more complicated relation such as

ysinx + xcosy = 1.

Fortunately it is a relatively simple matter to program numerical methods
to draw a more general implicit function

f(x,y) = constant

without solving the relationship explicitly. This will be demonstrated
using BBC BASIC (a language which beautifully expresses the
mathematical structure) though the techniques may be translated to other
computers with user-definable functions and high resolution graphics.

The approach advocated may be interpreted as a combination of the
Newton-Raphson approximation technique and partial derivatives. But
calculus is not necessary to carry out the calculations or to gain insight
into the theory. This speaks volumes for the possibility of introducing
numerical methods on the computer in parallel with the calculus or even
before it. I am certain that this is the direction that will eventually be
taken by mathematics in schools. I shall therefore write the article
without using any calculus at all.

The idea

The solution of an equation

f(x,y) = c

is better seen in a wider context. Imagine the values of the function

z = f(x,y)

are represented by plotting a point height z=f(x,y) above the point (x,y) in
the plane. The result is a surface like a range of hills. For example figure
1 shows the graph of

z = ysinx + xcosy

– 2 –

drawn using the program “Super3D” from the Supergraph package [1]
(with the z-scale reduced by a third to give a decent picture).

Figure 1 : the surface z= ysinx + x cosy

The lines drawn on the surface are those of the form x=constant and
y=constant.

The implicit relation

ysinx + xcosy = 1

consists of all the points on contour lines height f(x,y)=l.
We could get an idea where the contour lines lie by calculating

z = ysinx + xcosy

at an array of points in the plane and mark the points to distinguish
between those satisfying z<1, z=1 and z>l. If a point where z=1 occurs,
this gives a point on a contour but, if not, there will be a contour
somewhere between the places where z>1 and z<l. Figure 2 has a “–”
marked at (x,y) wherever z < l and a “+” where z>1, with the signs
occurring at intervals of 0.5, If this is compared with the original surface,
the valleys below a height z=1 correspond to the “–” signs and the hills to
“+”.

– 3 –

Figure 2 : The sign of the expression ysinx +xcosy – l

The contour between them is the set of points (x,y) satisfying the implicit
relation y sinx +xcosy = l. It is in several parts. To find a point on the part
in the top left quadrant, looking along the line y=2, reveals a change in
sign between x= –3.5 and –3. The accurate position could be found by
putting y=2 in the original equation:

2sinx+xcos(2) = l

and solving it to find a root for x between x= –3.5 and –3, we shall see
how this is done in the next two sections before attacking the main
problem of tracing round the contour.

The gradient of a graph

The gradient between two points (a, f(a)), (b, f(b)) on a graph y=f(x) can
always be calculated as

f (b) − f (a)
b − a

but on a curved graph this will depend on the values of a, b. However, if
a small segment of the graph highly magnified looks like a straight line
then the calculation of the gradient using any two nearby points (a, f(a)),
(b, f(b)) in the segment will give approximately the same value.

You may not believe that curved graph such as a circle can ever be
nearly straight. In one sense you would be right. But imagine that you are
a dedicated athlete (a strain on me but, I hope, not on you) and that you
are running round a circular track a kilometre in circumference. It
happens to be foggy so that you can only see ten metres ahead. The track

– 4 –

turns through 360 degrees in a kilometre, which is one degree in
approximately 27 metres; in the limited visibility the track will look
virtually straight, although in the large it turns full circle.

The same happens for a circle say x2+y2=1 drawn on A4 paper. It is
clearly curved, but if a tiny part were redrawn to a very high
magnification it would look virtually straight. Most graphs in terms of
ordinary functions have this “locally straight” property when highly
magnified. It is this property that is fundamental for differentiable
functions in the calculus. Our purpose is to use this property without the
calculus.

To calculate the gradient near a point x on a locally straight graph
y=f(x), we take a suitable tiny value, say e=0.000l, and work out the
gradient from (x, f(x)) to (x+e, f(x+e)). The gradient is (approximately)

f (x + e) − f (x)
e

On a computer this can be done in two stages: first express the function in
a user-defined form, say as a program line in BASIC. For instance, if the
function is f(x)=x2–2 then write

1O DEF FNf(x)=x^2Ð2

and define the gradient function g(x) as

2O DEF FNg(x)=(f(x+e)Ðf(x))/e

Before using this expression you will need to type in a value of e, say

LET e=O.OO1

The (approximate) gradient of the graph near x=1 is then obtained by
typing

PRINT FNg(1)

to give the value 2.0010001.
If e is changed to e =0.000567 then the gradient is given as 2.0005663,

agreeing with the previous value to 4 significant figures. Likewise any
other small value of e gives a gradient approximately equal to 2 near x=1.
Sensible values of e are around 1E– 4 or so. Anything much smaller leads
to loss in accuracy due to dividing one tiny number by another. The
approximate gradient anywhere else may be obtained in the same way.

– 5 –

The Newton Raphson Technique

Suppose that y=f(x) crosses the x-axis at x=c, so that f(c)=0 and that x1 is
near enough to c for the graph to be almost straight. (Figure 3.)

Figure 3 : The graph y=f(x) with x1 near where f(c)=0

The gradient of the graph from the point (c,0) (where it crosses the x-
axis) to (x1, f(x,)) is just

f (x1)
x1 − c

.

But the gradient near x=x 1, is also approximately

g(x1) = f (x1 + e) − f (x1)
e

so
f (x1)
x1 − c

≈ g(x1)

and

c ≈ x1 − f (x1)
g(x1)

.

If we let

x2 = x1 − f (x1)
g(x1)

then x2 may be a better approximation and a repetition of the process
using x2 in place of x1 may continue to get closer to the true value.

– 6 –

In a computer program we drop the suffix and simply say that if x is a
fair approximation to a root, then

x–f(x)/g(x)

is usually a better one. We can then replace x by x–f(x)/g(x) and repeat the
process.

When f(x) = x2–2, we may use the following program to print
successive approximations to a root of c2–2=0 until the result is accurate
within 1E–5:

5 p=O.OO1
1O DEF FNf(x)=x^2Ð2
2O DEF FNg(x)=(FNf(x+e)-FNf(x))/e
3O INPUT "x=" x
4O REPEAT
5O x=x-FNf(x)/FNg(x)
6O PRINT x
7O UNTIL FNf(x)<1EÐ5

For a computer language without the REPEAT command, delete line 40
and replace line 70 by

7O IF FNf(x)>1EÐ5 THEN 3O

Starting from x= l the BBC computer gives the sequence:

1.4999764
1.416668O8
1.41421537

The error tolerance 1E–5 maybe reduced: e=1E–5 on a BBC computer
gives √2=1.41421356 to the maximum accuracy of the machine in only
one more iteration. On a BBC computer we can replace line 10 by

1O INPUT "f(x)=" f$
15 DEF FNf(x)=EVALfS

to allow the function to be input as a BASIC string when the program is
run. This technique will be used in the main program.

Tracing round a contour

The initial move in tracing an implicit curve f(x,y)=c is to find a point on
the graph from which to begin the drawing routine. The technique is to
estimate a point (x,y) near the curve then to fix one of x or y and to move
the other onto the curve using the Newton Raphson method. The main
task is to trace round the contour. Walking in the Peak District recently I
found that there were often several paths crossing each other on a
mountain. It was often possible to start at a certain height and to move to
another place at the same height by going down one path and turning onto

– 7 –

another and walking up. The surface z=f(x,y) in the three-dimensional
picture drawn earlier using Super3D is traversed by paths x=constant and
y= constant. To move from one point at a certain height to another at the
same height nearby, a good plan of attack is to walk down a line
x=constant on the surface, then turn through 90 degrees and walk up a
line y=constant an appropriate distance to return to the original height. If
x varies and y stays constant, the gradient of the path on the surface above
(x,y) is approximately

g1(x,y)=(f(x+e,y)–f(x,y))/e.

Similarly, if y varies and x stays constant, the gradient of the path on the
surface above (x,y) is approximately

g2(x,y)=(f(x,y+e)–f(x,y))/e.

Moving an x-step h from (x,y) to (x+h,y) therefore causes a rise in the z-
direction by an amount

hg1(x,y).

At this point, keeping x+h fixed and taking a step k in the y-direction to
reach (x+h,y+k) will further change the height by

kg2(x+h,y).

The total change in height from (x, y) to (x+h, y+k) is therefore
approximately

hg1(x,y)+kg2(x+h,y).

If this returns to the former height then

hg1(x,y)+kg2(x+h,y).

This equation allows us to determine k in terms of h as

k=hg1(x,y)/g2(x+h,y).

(provided that g2(x+h,y)≠0.)

However, an attempt to write h in terms of k gives

h=kg2(x+h,y)/g1(x,y).

which involves h on the right hand side. If g2(x+h,y) and g2(x,y) are fairly
close, then the simplest way out of this dilemma is to replace g2(x+h,y) by
g2(x,y) to get a simpler (but possibly worse) approximation

hg1(x,y)+kg2(x,y)=0.

This single approximation can then be used to determine h in terms of k
or k in terns of h, whichever proves to be more appropriate.

To keep h and k a moderate size, a neat trick is to specify a step and
take the larger of k, h to be this size. First let

– 8 –

H=g2(x,y), K=g1(x,y)

so that

Hg1(x,y)+Kg2(x,y)=0.

If |H|>|K| (which, in particular, means H≠0) then we take the x-step to be
size s. To make sure we go in the same direction as H, we actually take

h=s*SGN(H),

and then put k=h*K/H.
The full rule (ii) in BASIC is:

IF ABS(H)>ABS(K) THEN h=s*SGN(H) : k=h*K/H
ELSE IF K<>O THEN k=s*SGN(K) : h=k*H/K

The values of x, y are then replaced by x+h and y+h to give a new point
further along the contour. Any inaccuracy nay be improved by a further
use of the Newton-Raphson technique before taking the next step.

A program to sketch an implicit function

We are now in a position to introduce the main program. The axes are
drawn by PROCdraw_axes and, after the input of the function f(x, y) (as a
BASIC string) and the constant c, the procedure PROCplot_colour plots
an array of points (x,y):

in red if f(x, y)<c, yellow if f(x, y)=0 and white if f(x, y)>c.

(If you cannot easily distinguish yellow and white points on your
monitor, add the line:

2O15 VDU 19,3,6;O;

to change the white colour to cyan.)

The main REPEAT loop allows values of x,y to be input and the value of
y to be improved to get closer to the contour line required. The step s is
then requested for the program to use as it traces round the graph of the
implicit function. The graph is drawn until the SHIFT KEY is touched
(INKEY(–l)) and returns to allow a move somewhere else to draw
another part of the contour. To draw a contour in the opposite direction,
change the sign of the step.

To stop the program entirely, either hold down the CTRL KEY (to
operate the final INKEY(–2) condition) at the same time as the SHIFT
KEY, or press ESCAPE.

– 9 –

1O MODE 1
2O PROCdraw_axes
6O INPUT "f(x,y)=" f$
7O INPUT "c=" c
8O PROCplot_colour : REM plot array of coloured dots for +/-
9O REPEAT : CLS : REM - main program loop

1OO INPUT " exact x=" x
11O INPUT "approx y=" y
12O PROCimprove_y : REM get accurate y for given x
13O PRlNT "exact y=" ;y
14O PLOT 69,1OO*x,1OO*y : REM - plot start point
15O INPUT "step s=" s
16O REPEAT : REM - drawing loop for a solution curve
17O H=-FNg1(x,y):K=FNy2(x,y)
18O IF ABS(K)<ABS(H) THEN

h=s*SGNH:x=x+h:y=y+h*K/H:PROCimprove_y
ELSE IF K<>O THEN

k=s*SGNK:y=y+k:x=x+k*H/K:PROCimprove_x
19O DRAW 1OO*x,1OO*y : REM - join to next point
2OO UNTIL INKEY(-1) : REM - until SHIFT key pressed
21O UNTlL INKEY(-2) : REM - until CTRL key pressed
22O END

1OOO DEF FNf(x,y)=EVALf$
1O1O DEF FNg1(x,y)=(FNf(x+e,y)-FNf(x,y))/e
1O2O DEF FNg2(x,y)=(FNf(x,y+e)-FNf(x,y))/e
2OOO DEF PROCdraw_axes
2O1O VDU 29;64O;48O; : REM - set graph window size
2O2O VDU 24,O,3,39,O : REM - set text window size
2O2O DRAW -5OO,O : MOVE 5OO,O : REM - start to draw axes
2O3O DRAW O,-5OO : MOVE O,5OO
2O4O VDU 5 : MOVE -564,-4 : PRINT "-5"
2O5O MOVE 5OO,-4 : PRINT "5" : VDU4
2O6O ENDPROC
3OOO DEPROCplot_colour
3O1O FOR x=-5 TO 5 STEP 1/2
3O2O FOR y=-s TO s STEP 1/2
3O3O z = FNf(x,y)
3O4O IF z<c THEN GCOL O,1 ELSE

IF z=c THEN GCOL O,2 ELSE GCOL O,3 :REM - set colour
3O5O PLOT 6,1OO*x,1OO*y : REM - plot point colour
3O6O IF INKEY(-1) THEN x=5 : y=5 :REM touch SHIFT to quit
3O7O NEXT
3O8O NEXT
3O9O GCOL O,2 : REM - reset colour
3O95 ENDPROC
4OOO DEF PROCimprove_y
4O1O IF FNg2(xy)=O THEN ENDPROC
4O2O REPEAT
4O3O y=y-(FNf(x,y)-c)/FNg2(x,y)
4O4O UNTIL ABS(FNf(x,y)-c)<1E-5 OR FNg2(x,y)=O OR INKEY(-1)
4O5O ENDPROC
5OOO DEF PROCimprove_x
5O1O IF FNg1(x,y)=O THEN ENDPROC
5O2O REPEAT
5O3O x=x-(FNf(x,y)-c)/FNg1(x,y)
5O4O UNTIL ABS(FNf(x,y)-c)<1E-5 OR FNg1(x,y)=O OR INKEY(-1)
5O5O ENDPROC

– 10 –

When the program is RUN, input the function

f(x,y)=x^2+y^2

with constant and start from (x,y)=(1,0) with step s=0.1. The implicit
curve drawn is the circle

x2+y2=1.

The picture is satisfactory because the Newton-Raphson approximations
in line 180 pull the calculations back onto the curve at every stage.
Deleting PROCimprove_y and PROCimprove_x would cause a great
deterioration in the program. With s=0.1 the solution would spiral out as
in Figure 4.

Figure 4 : Drawing without the improvement procedure

To draw the hyperbola

x2–y2=1,

start from (l,0) with s=0.2 then return to the same point with s=–0.2 to
obtain the curve in the opposite direction, repeating the process from
(0,1) to obtain the other branch. (Figure 5.)

– 11 –

Figure 5 : the hyperbola x2–y2=1, with each branch drawn separately

The more difficult graph

ysinx + xcosy = 1.

may be drawn by using this technique several times over (Figure 6.)

Figure 6 : The graph of the relation ysinx + xcosy = 1

Notice that the program does more than just draw the equation f(x,y)=c. It
also shades the regions f(x,y)<c, f(x,y) > c, so it represents inequalities as
well as equalities.

Use it to draw other implicit functions of your choice, but be warned
that every step in drawing involves several evaluations, so complicated
expressions may take much longer to draw. BBC BASIC is a fast version
of the language, but it is not speedy enough when many calculations are
required.

– 12 –

Modif icat ions

It is possible to modify the program either to get more insight into how it
works or to improve the facilities. To gain insight, one idea might be to
insert

4OO5 count=O
4O25 count=count+l

with the same lines at 5005 and 5025 and then add

195 PRINT TAB(2O,13);count;" "

to see how many extra iterations are required to get the .implicit curve as
accurate as desired. My computer has an Acorn speech chip so I added
the line

195 SOUND-1,48+count*1OO

instead, to hear Kenneth Kendall's dulcet tones call out the numbers1.
The synchronisation is not perfect but it adds a certain cultural quality.

It shows that the Newton-Raphson approximation requires very few
iterations to reach the required accuracy, taking one or two more steps at
tight corners.

An improvement might be to replace the dots in the plot_colour
procedure by line segments in the direction of the curve using the
following extra lines:

3O52 H=-FNg2(x,y):K=FNg1(xy)
3O54 1F H=O THEN a=O : b=12 ELSE

G=K/H : a=12/SQR(1+G^2) : b=a*G
3O56 PLOT O,-a,-b : PLOT 1,a+a,b+b

Figure 7 shows the ellipse

x2 + 3y2 = 7

drawn with the technique, revealing the direction lines of other ellipses in
the form

x2 + 3y2 = constant.

1The Acorn computer in 1986 had a speech chip with a small dictionary of words spoken by BBC
Newsreader Kenneth Kendall. This included number names and was accessed by the SOUND
command.

– 13 –

Figure 7 An ellipse with direction lines for other level curves

The opportunities for experiment are up to you, but that is the beauty of
modifying a given program. Powerful ideas like this provide practical and
useful mathematics. Programming numerical methods and graphing the
results in this way should surely become part of the mathematics
curriculum in the near future.

Challenge

Can you modify the program so that it draws implicit curves
automatically without any intervention from the user once the function is
typed in? (It may not be fast, but it should be accurate...)2

Reference
l. Tall, David (1985) SuperGraph, textbook and disc of interactive graph drawing

programs for the BBC computer, Glentop Publishing, D.V.

2 A program which does this is incorporated in the Supergraph suite of programs. It draws an implicit
function in less than a minute. Later, when the Archimedes computer was introduced with a fast RISC
chip, the same program operated in two or three seconds.

