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In ‘Understandinghe Calculus® | suggested howhe concepts of the calculus could be
approached globallysing movingcomputergraphics.The idea of areainder a graph
presents afundamentally greater problem than that of th&tion of gradient.Each
numerical gradient is found in a single calculation as a quotient

f(x+r;])-f(x)

but the calculation of the approximate areamder a graph requires mamytermediate
calculations. Usingalgebraic methods the summation ath but the simplest examples
becomes exceedingly difficult. A calculator initially allows easier numerical calculations but
these can become tedious to carry out @mgture to interpret. Graduating tccamputer
affords insight in two ways: through powerful number-crunching @rhmic graphical
display.

Algebraic methods

The areaunder a simple grapBuch as #%)=x2 may be approximated by dividing the
interval inton equalwidth strips and addintpgether thé'upper" and "lower'rectangular
approximations in each strip. If olk@owsthe appropriate formulae to simplify tsems,

it is possible see what happens ragets very largeThe methodfor y=xk involves
knowing the sum ofthe kth powers of 1, 2, 3..., n, which is plausiblgor sixth-form
students whek=1 or 2, but becomes quite unmanageable for much larger values.

In 1635 the Italian mathematician Cavaliestiemonstratechis computational facility by
performing the calculations fail powers up tok®. In those day€avalieriwas king, but
even he would be hard put to cope with

Numerical methods with a calculator

The arrival of the calculator pgiowerinto the hands of ordinary mortalgnablingarea
approximations to be computed numericaligr instancethe approximation$or the area
under f(x)=x2 from 0 to 1 using 10 strips are:
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lower sum: 0.285
upper sum: 0.385.

But this numerical information alone is not sufficient to determine the true value arfethe
and it would be very lengthy businessget more accurate approximations onoadinary
calculator.

A programmable calculator, suitably programmed, gives the area approximations using 100
strips as

lower sum: 0.32835
upper sum: 0.33835

and 1000 strips as
lower sum: 0.3328335...
upper sum: 0.3338335...

These still look a long way apart, ke average obwer and uppesums(equivalent to
the trapezium rule):

10 strips ... 0.335

100 strips ... 0.33335

1000 strips ... 0.3333335,
suggests the true area is probably 1/3.

By patiently building up the areas over other intervals, say 0aad.,2, 0 to 3,and so
on, it is possible t@onjecture that the ardam 0 tox is x3/3, but the numericalvork
begins to get oppressive unless a computer is available.

To spreadheload, Neill & Shuard used a whole class of students watilculators to
cooperate in producing a table of areas from 0 to 1 using the trapezium rule with 10 strips:

function fk) | approximate arep
X 0.50
X2 0.33
X3 0.25
x4 0.20
x5 0.17
X6 0.15
etc etc




By cunninglyshowingthe area calculations tmly two decimalplacesthe first four are
visibly 1/2, 1/3, 1/41/5,... and a checlshows 0.17, 0.1%@re approximately 1/6 and 1/7
respectively, leading to the conjecture that the area ungiexffrom 0 to 1 is 14+1).

Numerical methods with a computer

A computer with a flexible computer language can allow much mpowerful methods to
be used. Foexample, Powelf, shows howthe average of a subtle mixture of thest
ordinate,mid-ordinate and last ordinate rulesn give the same result &mpson’s rule.
This leads to far moraccurate calculatiorsnd can beanost helpfulfor inducingalgebraic
formulae from numerical results.

But there is far more to a computer thmmmber-crunchingAll the methods considered so

far concentrate on the final result of an area calculation and neglect the information given by
the intermediate sums. When theea is calculated, each parsaim fromato x gives the
approximate area as a functionf If we could onlyutilize this information in some
sensible way, perhaps we could get to the area function more directly...

Graphical Insight with a Computer

Using the informationfrom the partialsums isnot as straightforward as rhight be.
However, if by guile or good luck one plots the successiveulative area calculations for
f(X)=x2 over a suitable range, one gets an interesting picture (fijuiéhe separatpoints
represent thareaunderthe graph fromx=0 to the currenk coordinateusing the mid-
ordinate rule. The area graph crosses the graphxf atx=3, y=9. The areagraph looks
like a higher power of, saykx3 for some constark. Substitutingx=3, y=9 givesk=1/3
and suggests a possible area functis®.
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Figure 1 : The cumulative area under f(x)=x2 from 0 to 5

This inspired guessan be given more credence if we are brameugh to try amore
powerful approach.

Suppose wéorget theobsession withcalculating the areandery=x2 from 0 to 1 and
encourage students to look mbre generakexamples. Firsthey mustknow how to
calculate an approximate area using, say, the first ordinate or mid-ordinate rule. This can be
done in simple cases by hand, or by calculator, to get theTitlea.they can graduate to a
piece of software that takes the drudgery out of the calculaticthsisthey can concentrate

on the ideas rather than the technicalities. The prodsBREBA in Graphic Calculus ’
drawsany graphy=f(x), then calculates the area between specfigdts a,b with any

given step-widtle, using either the first ordinate, mid-ordinate or last ordina (If the
step-widthc is not an exact divisor dhe intervalb—a, the laststrip is reduced in width to

make it fit.)

Notice that the program does not estimate upper and kuwes. These areeasy enough if
the graph is strictly increasing or decreasingt, if aninterval encloses aaximum or
minimum, a sophisticated estimation techniquauld be required to findhe upper or
lower value. The theory of "upper and lower sumsbugt on an “existence” theorethat
assertsthese sums exist, without showingexplicitty how they may be -calculated.
Employing the first or last ordinate @ach interval idoth more straightforward andore
honest!

Using the software studemtsay explore many possibilities inshort time. For example,
can oneestimate the areanderthe graphy=sinx from a=0 to b=m? By symmetry this is
twice the aredrom a=0 to b=1v2 wherethe graph is increasing. Here first ardst



ordinates give lower and uppsums sandwichinghe true area irbetween.The mid-
ordinate rule using a step1/4 gives the approximate area as 1.0024 (figure 2).
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Figure 2 : The approximate area under sinx from O to Tt

Alternatively, one may set the display sbow the three calculations simultaneously; for
x=1/50 the area approximations are:

first ordinate: 0.9900
last ordinate: 1.0010
mid-ordinate: 1.0000

Studentsare often intrigued tdind that more accurate estimaté® the areaunder a
trigonometric graph seem to suggest the area is an exact whole number.

Subsequent investigatiomsight be to see whatnswerthe computemgives forthe area
from a=1tto b=21t Here the graph is below the axis and the calculation givestamate of
the areafrom the x-axis down tothe graph. The ordinates arall negative and the
calculationsall give a negativeesult, represented in the picture by rectangles in outline
rather than filled in (figur8). Thereason forthe sign is not hard teee. The method of
calculating the area takes the step-length times the ordinate irrezaahgle. If thestep-
length is positive and the ordinate negative, then the product will be negative.
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Figure 3 : Area from 1tto 211

At this stage it is instructive to ask the students what might happen if oné toake left

of a, which wouldrequire a negativetep.This is rarely done irraditional courses and
teachers often suggest to me that it is too difficult for thidents. Howeveithe students

| have worked with seem to find it no problemalit a negative step and positive ordinate
gives a negativeroduct, anegative step and a negative ordingitees a positivgoroduct.

The ideas may be immediately tested using the program to perform the area calculation from
a=1tto b=0 or froma=0 tob=—T1, in each case with negative step, say1/10.

The computer simulation is rather better than a static picture (figure 4); using a negative step
the picture of the area approximation builds up from righéfto One cansee thenegative
step and sense the growth of the area as the picture develops.
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Figure 4 : using a negative step



By allowing students to investigategativesteps,all four possiblecombinations okigns
are covered: positive or negative step with positive or negatdieate. Thughey seehat
calculations from left to right produce a positive result abovextigeand a negative result
below, but going from right to left reverses the signs.

It is knownthat students doingalculus the traditionalvay have difficulty understanding
the reasons for positive andegative areas; often they are simply told the rule in an
instrumentalway. With the computer graphiapproach the concept is given a meaningful
interpretationwhich relates to their othenathematicakexperiences. It is hard to think of
many other contexts in mathematiwherethe multiplication ofsigned numbers is given
such a powerful and meaningful interpretation.

Notice that this discussion ttie sign ofthe area can occur early on in the encounttdr
the areaconcept. By exploringthe software described, studentmin a meaningful
awareness of two fundamental ideas:

(1) whensmallerstrips are taken,the area approximatiogets closer to the
true area,

(2) the area calculation takes thign of step andrdinate into account in a
meaningful way.
This experience can now be applied to the problem of finding the area betyesgyhaand
thex-axis from a fixed point a to a variable patnd considering it as a functionof

For examplethe cumulative area functidior the graph fk)=x starting ata=0 may be
plotted. Moving to the right of the origimequires a positive step and hagasitive
ordinate, sathe result ispositive. But moving tahe left has anegative ordinate and a
negativestep, whichagaingives a positiveresult. Usingthe program to plot tharea
calculations starting frorthe origin, first moving to theright, then starting again at the
origin and moving to the left gives figure 5. The graph nakes on a recognisable shape:
probably a quadratitunction, inthe form kx2 for somek. As the aregraph crosses the
original graph ak=2,y=2, it is easy to conjecture that the area functio®/s
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Figure 5 : The area under f(x)=x calculated from x=0

The program allows a formula to be typed in and comparedthétioriginal: itfits like a
glove.

The sameprocessapplied to fk)=x2 also gives an increasing graphtke right of the
origin, but moving to thdeft with a negative step and positigvedinate, gives aegative
result. The area graph looks like a cubic curve (figure 6).€Beer argument that therea

may bex3/3 is then enhanced. It can be tested by superimposing the latter graph.
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Figure 6 : The area under f(x):x3 calculated from x=0

The two area functions calculated from the origin:

function area
X X2[2
X2 x3/3



suggestthe general pattern: the araader f&)=x" from O tox may be conjectured as
[(x)=x"*1/(n+1). The formulae may be typed into the progranthis form to see if it
works for other values of.

As the area frome=a to x=b is the difference between the areas, |{rom x=0 to x=a, and
I(b), from x=0 to x=b, the aredrom x=a to x=b may be conjectured to be the difference
I(b)—I(a). The prograndisplays 10)—I(a) during areacalculations, so one may see if the
numerical approximations get close to this value for various valuapof. It does so for
all positiven (even though" is only defined for positive whenn is not a whole number).

At a laterstage one may testhat happens with other values f For instance, ih is
negative and not a whole number, the graph is only definecd-@and the formulavorks

for any positive values @t b. But whenn is a negative whole number the situation gets far
more interesting. The formulaorks forn=-2,-3,..., but there is a “hiccuptrossing the
origin which we shall see also shows up in the casé.

Forn=-1 the area from=a to x=b can be calculated numerically (provided one does not hit
the pointx=0). But the formula IX)=x"*1/(n+1) is nowheredefined because it involves
dividing by n+1 which is now zero.

There is room here for interesting investigativerk into the property ofthe area function
for f(x)=1/x. For instance, if A{) is the areainderthe graph froma=1 to b=x, one may
explore the relationship betweenxd), A(x2) and Ak;+xo) to discoverthe logarithmic
property, or estimate the constarguch that AK)=1, leading to the constaat

The area function X=In(x) givesthe aredrom ato b as 1p)-I(a) providedthat a,b are
both positive. But In() is not defined fox<0. The function K)=In|x|, typed asn(abs)),

is defined on both sides of the origin, e area calculationb)-I(a) only works if a and
b have the same sign.

To highlight the problem, the program has an option to make each step a random size up to
the nominated value of trstep-width.Whena,b areboth onthe sameside ofthe origin,

the numerical calculation of aresing a random step does not vamych andfor small

steps it approximates td)l(a) as expected.

However, ifa,b are taken on opposite sides of the origin, several runs using a random step
produce totally different results, depending on what large valueg afd.picked upvhen

X is nearzero. For exampleghreeruns ofthe progranfrom a=—1 tob=1 with maximum
random steg=1/10 produced the results: 4.3590, 0.7267, —11.6602.



Experiencesuch aghese help the student tmderstand whyne should noattempt to
calculate areas across a place where the function gets arbitrarily large.

The Fundamental Theorem

The experiences of the precedsgrtions naturalljead to the idea that the area function
I(X) differentiates to give the original functiox)( Thus onemay conjecture the “theorem”
that if I'(x)=f(x) for all values ok from a to b, then thearea between thgraphy=f(x) and
thex-axis is 1p)-1(a). But is this always so?

My suggestion here is to stretch the graph horizontally whilst kedpéengertical scale the
same. To do this in gicture one takes thgrange to be aormalsize, say y=-2 to 2 and
chooseghe x-range very small, say from=0.999 to 1.001. Ithese rangeare used to
give a squar@icture,the result is ax-scalegreatly stretched compared witte y-scale.
The graph comes out much flattendebr instance theyraph ofy=sinx over these ranges
looks like a horizontal straight line! (Figure 7.)

Fix)=s5sinx
from x=.999 to 1.881

8.9995 1.8885

- ]

Figure 7 : Horizontal stretching of the sine graph

The area under a horizontal graph is the winlties the height of thgraph. Thughe area
under this stretched graph fronto x+h (whereh is small) is approximateliz times f().
But if I(X) is the aredrom a fixed point a to a variable poixt the aredrom x to x+h is
then approximately

1(x+h)-1(x) = hf(x)

which gives

[(x+h)-1
0. )

— 10—



As h gets very small the left-hand side gets clos&xXp suggesting that(k)=f(x).

Of course this is a flawed argument which cawstedents some problemzarticularly in
deducing an equality from an inequality. useful exercise whicimay help to set the
argument in perspective is tisaw the graph over a number @hnges,starting with the
samex- andy-ranges,then successively reducintbe x-range. Aseachgraph isdrawn,
with a smallerx-rangestretched to fit into aquarethe graph getdlatter andflatter. It is
possible to suggest the idea thathagets smaller irf*) the graph gets closer to a straight
line and the approximatiogets better. Thus it is possiblelelievethat, ash- 0, so the
inequality (*) tends to the equality(X)=f(x).

The role of continuity

Continuity is very rarelydiscussed to angreat extent in &irst course in calculus. But it
arisesnaturally in the fundamentétheorem. Taget the theorem twork requiresthe idea
that thegraphcan be stretched horizontally so that a small lpas flat. What does this
mean? Thegraph is not genuinelffat. What happens ighat the variation in height is so
small that itoccurs within apixel height on the televisioacreen. Tosimplify matters,
supposehat the pointg is in the middle of thex-scale andhe point &p,f(Xg)) on the
graph is in the middle of a pixel representing an actual heggh¥@ want to knowthat we
can find an x-range fromy-d to Xg+d so that foix in this range the value ofx lies in the
pixel. Thus we need to know that, giverwe can findd such that fox in the range:

Xo—d < X < Xg+d
we have f) in the pixel height:
f(xp)—e < f(X) < f(xg)+e.

Translating the letters,d into Greek tomake itlook more mathematicalyives the well-
known definition of continuity:

The function f§) is continuous aty if:

givene>0 there exist®>0 such that

Xg—0< X < Xg+0 implies ffg)— < f(X) < f(xg)+e,
or, making it even more abstruse with modulus signs:

givene>0 there exist®>0 such that

[X-Xo|<d implies |f§k)-f(xg)1<e.

- 11—



Thus the fundamental theorem is the natural place in the caldolushe notion of
continuity to arise. If fk) is continuous, itsarea function ) is differentiable and
I'(X)=f(x). In this way intuitive ideas may be laid down to form a basishedater formal
theory.

Integrating continuous functions

The fundamental theoredoes notequire the functiorf(x) to have a derivative, it only
requires continuity. Thus onean consider a function such as f(x)=|x| (typed as
f(x)=abs(x)) which is continuous but ndifferentiable at theorigin. Its area function
starting froma=0 is

[(X)=x2/2 (for x>0)

and
[(X)=-x2/2 (for x<0).

Being devious, one can type this in as
[(xX)=x(abs))/2.

Thus one gets a functiorx)(which is differentiable everywhere to givéJ=f(x), but f(x)
is not differentiable at the origin (figure 8).

Integrating discontinuous functions

The program AREA can be used to investigate slightly more offfbeations.One of my
favourite examples is

f(X)=x—int(x)
which is the BASIC functiox-INT(X), subtracting the integer partfromx, leaving the
decimal part.
Thus

f(2.345) = 2.345-INT(2.345) = 2.345-2 = 0.345.
The graph is not continuous at any integer. (Try distendimgrizontally to see if it will

stretch to looKlat there!)But anattempt todraw the ared'under”the graph produces an
interesting result.

Using, say, the firsbrdinate approximation, ainterval is divided intcstrips andhe area
approximated by a sequence of rectangles, each of which has its hdiyhfiras ordinate
in the strip (figure9). Visibly the area can be calculatedthis way, and for verysmall

strips it approximates to a triangular area in each unit interval.

— 12—



It is an interesting problem-solving exercise to fihd formulafor the area functior{see

[4]). Even without theformula, the approximate area function may be represented
graphically, starting a=0 and moving irsteps, first tahe rightwith stepc=0.1, then to

the left withc=—0.1. The resultingicture (figurel0) is not veryaccuratebut, with alittle
graphic licence, one may st®t the areéunction graph is smootbxcept at each integer
point, where it clearly has different gradients to the left and the gtg.may imagine that
magnified up near these points the graph of the area function will never look straight, it will
look like a "corner". Thus thiarea functiorhasthe propertythat it isnot differentiable at

each point where the original function is discontinuous. This gives a foretaste of a powerful
theorem in analysis not usuallyet until the first or second year of a university
mathematics course:

« If a functiony=f(x) is (Riemann) integrable in the intervallf] to give an
area function K), then 1) is continuous.

* At every pointxg in [a,b] where &) is continous, ) is differentiable
and I'ko)=f(xo).

Integrating non-differentiable functions

The program AREA only allows functions to be typed in whachexpressed as standard
formulae. But the fundamental theorem applies to any continuous furfetioexample, it
applies to the blancmange functiox)gé], which is everywhere continuous and nowhere
differentiable. Thughe area function #§x) for the blancmange functiohasthe property
that it is differentiableeverywhere and {(x)=b(x). The function B(x) is a function
everywhere differentiablence, but nowheredifferentiable twice. Similarly the area
function y(x) for by(x) satisfies b'(X)=b1(x), so b(x) is everywhere differentiablevice
but nowherethree times. Repeating theprocess gives arexample of a function
differentiable everywhenatimes, but nowhere+1 times. The mind boggles!

A graphical approach to calculus is thus not just a "siwgalg in" for beginningstudents,
it also provides insight into powerful theorems that occur much later in fonatabmatical
analysis.
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