
Now that calculators ore readily available they ore sometimes used in
classrooms to explore patterns in sequences of numbers. lt has been
pointed out that some patterns such os

1 1 X 1 1 = 1 21 1 1 1 X 1 1 1 = 12321 1 1 1 1 * 1 1 1 1 = 1 234321 ...

only really become interesting when the numbers get too big for a
calculator to handle accurately. Computers ore usually no better but, in
the article that follows, David Tall explains that he has the answer.

Arithmetic with large numbers

M
odem microcomputers do not usually cope
well with the arithmetic of large integers;

instead they store and display numbers to an
accuracy of a few digits, with inevitable rounding
errors. This is a consequence of the way
computer languages represent and process
numbers, rather than an inherent weakness of the
computer. By using a different representation it is
possible to obtain accuracy to any specified
degree, subject only to the limitations of available
memory. In this article I shall show how BBC
BASIC may be extended to calculate exact
sums, differences, products, quotients,
remainders and powers for whole numbers in the
range±. 10 254 and shall demonstrate how this

facility can be used to factorize large numbers.

Normally BBC BASIC can only cope with integers in
the range ±(231-1). The command

A%=2j31-1
gives an integer variable its maximum value whilst

A%=2 j 31

produces the error message 'Too big'.
The technical reason for this is that integers are

stored internally in four memory locations, each of
' which can hold an eight-digit binary number. The

number of binary digits available is therefore thirty-48
two. One of them is used to represent the sign. Thus the

largest integer that can be represented is 231 - 1. This
can give unsatisfactory results. Even in the accepted
integer range the numbers are not printed accurately in
decimal notation.

A%=2 j 31- 1: PRINT A%

gives the expression
2.14748365E9

instead of the exact answer

2,147,483,647.

A%=2 i 31- 1 :PRINT 2*A% : PRINT A%+A%

gives two radically different answers:

2* A %=4.29496729E9

and

A%+A%= -2.

The difference arises from an error in the BASIC
interpreter. Integer arithmetic is used wherever
possible, and the interpreter switches to floating-point
routines when integers become inappropriate. The
computation 2* A% clearly exceeds the maximum
integer size and is performed in floating-point
arithmetic. But A%+ A% is erroneously carried out

'
as

an integer calculation, with the sum of two thirty-one
digit binary numbers producing an error in the thirty
second place. This sets the minus sign, but fails to

Autumn 1985 MICROMm'B

methods have been devised independently by Trevor
Fletcher and Joe Watson. Joe's package is available on
disk from Keele Department of Education for £5 . The
central idea is to hold the number in memory as a string,
giving a: maximum length of 255 digits. To perform the
arithmetic the strings of digits are �roken into
manageable chunks (four digits at a time, say) which
are turned into numbers so that they can be operated on
using ordinary BASIC arithmetic. The results are then
reassembled to give the answer as another long string of
digits. Addition and subtraction are fast; multiplication
and division are a little slower. The methods are ideal
for the demonstration of what can be done in BASIC and
are quite satisfactory for normal arithmetic. But time
becomes a problem when a large number of operations is
required. In such circumstances a method of speeding
up the calculations becomes highly desirable.

Faster arithmetic is made possible by writing the
routines in machine code. The '6502 processor' that
drives the BBC M icrocomputer includes routines for
decimal arithmetic which are totally ignored by BBC
BASIC. The program given on the disk available in
connection with this issue of MICROMATH uses these
neglected resources to provide arithmetic. for large
numbers.

·I shall illustrate some of the operations that can be
carried out with large numbers.

To load the procedures into your computer, type

CHAIN " BIG NUM"

Typing

PROCcalculate

turns the computer into a simple large-number
calculator that also prints the time taken for each
operation. For instance, the value of 2200 will be
printed as

160693804425899027554196209234116260
2522202993782792835301376

in just 0 .15 seconds

Investigations confirm that the longer the strings are,
the longer it takes, and addition and subtraction are
much faster than the other operations.

Playing with vast numbers may soon pall, as
meaningless strings of large digits are flashed up before
your eyes, though you may get some perverse pleasure
from causing calculation overflow even with these large

MICROMATH Autumn 1985

PRINT FN add("123123123", "15452345")

immediately prints out the result of adding the
numbers contained in the strings. Corresponding
results will be obtained from FNsubtract and
FNmultiply.

PRINT FN power ("2", "200")

gives the calculation of2200 mentioned earlier.
Calculating the quotient or remainder in a division

involves producing both answers simultaneously.
Whichever is calculated first, 'FNother' can be used to
obtain the other one. Thus

PRINT FNquotient("14","3") : PRINT FNother

gives the quotient, 4 , followed by the remainder, 2 ,
whilst

PRINT FNremainder("31","5") : PRINT
FNother

gives the remainder, 1 , followed by the quotient, 6 .
Functions may be combined; typing

PRINT FNsubtract (FNpower("2","31"),"1")

reveals the true value of2 i 31- 1.

Values may be held in integer strings, so that the
previous calculation can be performed in three steps, as
follows:

P$=FNpower("2"."31") : A$=FNsubtract(P$,"1"):
PRINT A$

with the obvious bonus that the result of A$ is stored in
memory, should it be required again.

A number of useful procedures for factorizing large
numbers are included in the program. One of these is for
the highest common factor of two large integers and has
exactly the same form as THE BASIC procedure which
can be written to find the highest common factor of two
integers of normal size.

DEF FNgcd(X%,Y%) : IFX%=0 THEN= Y%
ELSE =FNgcd(Y%M ODX%,Y%)

gives the highest common factor (or greatest common
divisor) of the two integers, X% and Y%, of normal size.
Typing

PRINT FNgcd(3108 ,4095) 49

will give the greatest common divisor of 3108 and 4095
as 21.

A function for finding the highest common factor of
two large integers can be defined having exactly the
same structure:

DEF FNhcf(X$, Y$): IF X$="0" THEN=Y$
ELSE=FNhcf(FNremainder(Y$, X$), Y$)

and gives a fast and accurate result even with very large
numbers.

Finding the factors of a single number is a different
kettle of fish. The machine code is much faster than the
BASIC routines, but even on a very fast main-frame the
time taken for calculating factors increases
exponentially with size. It has been estimated that the
factorization of a random 200-digit number on a main
frame computer could take 3.8 billion years , so do not
expect miracles! The simple routine to be described
copes with numbers containing less than twenty digits
in a reasonable time.

An elementary algorithm for finding factors uses the
property that, if a number n has a factor it has one which
does not exceed the square root of n. The function
FNfactor (X%), which can be used for normal numbers ,
seeks factors of X% by starting at 2 and trying
successively each number until the square root of X% is
reached. When a factor is found it is checked to see if it
repeats: the quotient is calculated and this searched for
further factors. The square root of the quotient now
provides a new maximum for any remaining factors;
because this is less than the square root of X% the
extent of the search is reduced. The function
FNfactor(X%) produces a string containing the product
of the prime factors:

PRINT FNfactor(120)

yields the string

"2*2*2*3*5".

while

F$=FNfactor(X%): PRINT EVAL F$

evaluates the product of the factors and gives the
original number, X%.

FNfactors(X$) is used to find factors of large numbers
by an analogous process. No square-root function is
available, but the length of the string can be used
instead: if a number n has a factor, it must have one
whose length does not exceed half the length of n.

You can gain an idea of the time this method takes to
calculate factors by using the routine:

REPEAT : INPUT "number="X$: TIME=O:
PRINT "factor=" FNfactors(X$):
PRINT "time taken="; TIME/100;
"seconds" : UNTIL FALSE

Here are results of a few typical runs.

number=120
factors= 2*2*2*3*5
time taken=0.2 seconds

number= 1024
factors= 2*2*2*2*2*2*2*2*2*2
time taken=0.37 seconds

number= 243912827
factors=7591 *30677
time taken=212.61 seconds

The larger the prime factors, the longer it takes. The
arithmetic operations for large numbers always take at
least 1/100 of a second and often take much longer. Even
at 1/100 of a second per search it would require one
second to try 100 numbers and lOll- 2 seconds to try
lOll numbers. A number containing a prime factor with
forty digits would cause the search to continue until the
divisor had more than twenty digits. This would take
far in excess of 1018 seconds or about thirty-billion
years.

Should you allow your fingers to type a random forty
digit number for the computer to factorize you may
reach an impasse to which the only solution is to press
ESCAPE.

An attempt to

PRINT FN factors(FN power("2", "200"))

fails for another reason: the string of factors

2*2*2*

becomes 'too long'. The alternative routine
FNpowerfactors copes better by grouping together
powers of a given prime number.

PRINT FNpowerfactors("120")

gives

(2 i 3)*3*5

so that
PRINT FN powerfactors(FN power("2", "200"))

successfully yields the response

(2 i 200).

The routines may easily be used in other programs. The
exact way in which this can be done is described in the
notes accompanying the disk. •

David Tall works at the Mathematics Education Research

Centre, University of Warwick

Autumn 1985 MICROMATH

	p1
	p2
	p3

