
Now that calculators ore readily available they ore sometimes used in 
classrooms to explore patterns in sequences of numbers. lt has been 
pointed out that some patterns such os 

1 1 X 1 1 = 1 21 1 1 1 X 1 1 1 = 12321 1 1 1 1 * 1 1 1 1 = 1 234321 ... 

only really become interesting when the numbers get too big for a 
calculator to handle accurately. Computers ore usually no better but, in 
the article that follows, David Tall explains that he has the answer. 

Arithmetic with large numbers 

M
odem microcomputers do not usually cope 
well with the arithmetic of large integers; 

instead they store and display numbers to an 
accuracy of a few digits, with inevitable rounding 
errors. This is a consequence of the way 
computer languages represent and process 
numbers, rather than an inherent weakness of the 
computer. By using a different representation it is 
possible to obtain accuracy to any specified 
degree, subject only to the limitations of available 
memory. In this article I shall show how BBC 
BASIC may be extended to calculate exact 
sums, differences, products, quotients, 
remainders and powers for whole numbers in the 
range±. 10 254 and shall demonstrate how this 

facility can be used to factorize large numbers. 

Normally BBC BASIC can only cope with integers in 
the range ±(231-1). The command 

A%=2j31-1 
gives an integer variable its maximum value whilst 

A%=2 j 31 

produces the error message 'Too big'. 
The technical reason for this is that integers are 

stored internally in four memory locations, each of 
' which can hold an eight-digit binary number. The 

number of binary digits available is therefore thirty-48 
two. One of them is used to represent the sign. Thus the 

largest integer that can be represented is 231 - 1. This 
can give unsatisfactory results. Even in the accepted 
integer range the numbers are not printed accurately in 
decimal notation. 

A%=2 j 31- 1: PRINT A% 

gives the expression 
2.14748365E9 

instead of the exact answer 

2,147,483,647. 

A%=2 i 31- 1 :PRINT 2*A% : PRINT A%+A% 

gives two radically different answers: 

2* A %=4.29496729E9 

and 

A%+A%= -2. 

The difference arises from an error in the BASIC 
interpreter. Integer arithmetic is used wherever 
possible, and the interpreter switches to floating-point 
routines when integers become inappropriate. The 
computation 2* A% clearly exceeds the maximum 
integer size and is performed in floating-point 
arithmetic. But A%+ A% is erroneously carried out 

'
as 

an integer calculation, with the sum of two thirty-one
digit binary numbers producing an error in the thirty
second place. This sets the minus sign, but fails to 
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methods have been devised independently by Trevor 
Fletcher and Joe Watson. Joe's package is available on 
disk from Keele Department of Education for £5 . The 
central idea is to hold the number in memory as a string, 
giving a: maximum length of 255 digits. To perform the 
arithmetic the strings of digits are �roken into 
manageable chunks (four digits at a time, say) which 
are turned into numbers so that they can be operated on 
using ordinary BASIC arithmetic. The results are then 
reassembled to give the answer as another long string of 
digits. Addition and subtraction are fast; multiplication 
and division are a little slower. The methods are ideal 
for the demonstration of what can be done in BASIC and 
are quite satisfactory for normal arithmetic. But time 
becomes a problem when a large number of operations is 
required. In such circumstances a method of speeding 
up the calculations becomes highly desirable. 

Faster arithmetic is made possible by writing the 
routines in machine code. The '6502 processor' that 
drives the BBC M icrocomputer includes routines for 
decimal arithmetic which are totally ignored by BBC 
BASIC. The program given on the disk available in 
connection with this issue of MICROMATH uses these 
neglected resources to provide arithmetic. for large 
numbers. 

·I shall illustrate some of the operations that can be 
carried out with large numbers. 

To load the procedures into your computer, type 

CHAIN " BIG NUM" 

Typing 

PROCcalculate 

turns the computer into a simple large-number 
calculator that also prints the time taken for each 
operation. For instance, the value of 2200 will be 
printed as 

160693804425899027554196209234116260 
2522202993782792835301376 

in just 0 .15 seconds 

Investigations confirm that the longer the strings are, 
the longer it takes, and addition and subtraction are 
much faster than the other operations. 

Playing with vast numbers may soon pall, as 
meaningless strings of large digits are flashed up before 
your eyes, though you may get some perverse pleasure 
from causing calculation overflow even with these large 
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PRINT FN add("123123123", "15452345") 

immediately prints out the result of adding the 
numbers contained in the strings. Corresponding 
results will be obtained from FNsubtract and 
FNmultiply. 

PRINT FN power ("2", "200") 

gives the calculation of2200 mentioned earlier. 
Calculating the quotient or remainder in a division 

involves producing both answers simultaneously. 
Whichever is calculated first, 'FNother' can be used to 
obtain the other one. Thus 

PRINT FNquotient("14","3") : PRINT FNother 

gives the quotient, 4 ,  followed by the remainder, 2 ,  
whilst 

PRINT FNremainder("31","5") : PRINT 
FNother 

gives the remainder, 1 ,  followed by the quotient, 6 .  
Functions may be combined; typing 

PRINT FNsubtract (FNpower("2","31"),"1") 

reveals the true value of2 i 31- 1. 

Values may be held in integer strings, so that the 
previous calculation can be performed in three steps, as 
follows: 

P$=FNpower("2"."31") : A$=FNsubtract(P$,"1"): 
PRINT A$ 

with the obvious bonus that the result of A$ is stored in 
memory, should it be required again. 

A number of useful procedures for factorizing large 
numbers are included in the program. One of these is for 
the highest common factor of two large integers and has 
exactly the same form as THE BASIC procedure which 
can be written to find the highest common factor of two 
integers of normal size. 

DEF FNgcd(X%,Y%) : IFX%=0 THEN= Y% 
ELSE =FNgcd(Y%M ODX%,Y%) 

gives the highest common factor (or greatest common 
divisor) of the two integers, X% and Y%, of normal size. 
Typing 

PRINT FNgcd(3108 ,4095 ) 49 



will give the greatest common divisor of 3108 and 4095 
as 21. 

A function for finding the highest common factor of 
two large integers can be defined having exactly the 
same structure: 

DEF FNhcf(X$, Y$): IF X$="0" THEN=Y$ 
ELSE=FNhcf(FNremainder(Y$, X$), Y$) 

and gives a fast and accurate result even with very large 
numbers. 

Finding the factors of a single number is a different 
kettle of fish. The machine code is much faster than the 
BASIC routines, but even on a very fast main-frame the 
time taken for calculating factors increases 
exponentially with size. It has been estimated that the 
factorization of a random 200-digit number on a main
frame computer could take 3.8 billion years , so do not 
expect miracles! The simple routine to be described 
copes with numbers containing less than twenty digits 
in a reasonable time. 

An elementary algorithm for finding factors uses the 
property that, if a number n has a factor it has one which 
does not exceed the square root of n. The function 
FNfactor (X%), which can be used for normal numbers , 
seeks factors of X% by starting at 2 and trying 
successively each number until the square root of X% is 
reached. When a factor is found it is checked to see if it 
repeats: the quotient is calculated and this searched for 
further factors. The square root of the quotient now 
provides a new maximum for any remaining factors; 
because this is less than the square root of X% the 
extent of the search is reduced. The function 
FNfactor(X%) produces a string containing the product 
of the prime factors: 

PRINT FNfactor(120) 

yields the string 

"2*2*2*3*5". 

while 

F$=FNfactor(X%): PRINT EVAL F$ 

evaluates the product of the factors and gives the 
original number, X%. 

FNfactors(X$) is used to find factors of large numbers 
by an analogous process. No square-root function is 
available, but the length of the string can be used 
instead: if a number n has a factor, it must have one 
whose length does not exceed half the length of n. 

You can gain an idea of the time this method takes to 
calculate factors by using the routine: 

REPEAT : INPUT "number="X$ : TIME=O: 
PRINT "factor=" FNfactors(X$): 
PRINT "time taken="; TIME/100; 
"seconds" : UNTIL FALSE 

Here are results of a few typical runs. 

number=120 
factors= 2*2*2*3*5 
time taken=0.2 seconds 

number= 1024 
factors= 2*2*2*2*2*2*2*2*2*2 
time taken=0.37 seconds 

number= 243912827 
factors=7591 *30677 
time taken=212.61 seconds 

The larger the prime factors, the longer it takes. The 
arithmetic operations for large numbers always take at 
least 1/100 of a second and often take much longer. Even 
at 1/100 of a second per search it would require one 
second to try 100 numbers and lOll- 2 seconds to try 
lOll numbers. A number containing a prime factor with 
forty digits would cause the search to continue until the 
divisor had more than twenty digits. This would take 
far in excess of 1018 seconds or about thirty-billion 
years. 

Should you allow your fingers to type a random forty
digit number for the computer to factorize you may 
reach an impasse to which the only solution is to press 
ESCAPE. 

An attempt to 

PRINT FN factors(FN power("2", "200")) 

fails for another reason: the string of factors 

2*2*2* .... 

becomes 'too long'. The alternative routine 
FNpowerfactors copes better by grouping together 
powers of a given prime number. 

PRINT FNpowerfactors("120") 

gives 

(2 i 3)*3*5 

so that 
PRINT FN powerfactors(FN power("2", "200")) 

successfully yields the response 

(2 i 200). 

The routines may easily be used in other programs. The 
exact way in which this can be done is described in the 
notes accompanying the disk. • 

David Tall works at the Mathematics Education Research 

Centre, University of Warwick 
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