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ABSTRACT The computer is going to revolutionize
mathematical education, not least with its ability to calculate
quickly and display moving graphics. These facilities have
been utilized in interactive programs to demonstrate the
ideas in differentiation and integration, evolving new
dynamic concept images.

Theoretical background

The work described in this paper is the result of a happy accident of
history. Over a number of years mathematics educators have studied the
concept imagery generated by students when learning the calculus and
now microcomputers have become available which can draw moving
pictures to provide powerful cognitive support for this imagery.
Though by no means a total solution, it is hoped that interactive work on
the computer can give fruitful insight into the calculus that is potentially
more meaningful.

The research of Orton (1979) confirmed that a group of students
taught by current methods in the U. K. had great difficulty with a
number of ideas in the calculus requiring relational understanding.
These included the idea of rate of change between two points on a graph
with all the possible signs involved, the notion of the derivative as a
limit, the idea of the area as the limit of a sum and the meaning of
positive and negative areas.

Other authors have noted interference in mathematical meaning
through the use of words that have different colloquial connotations.
For instance, the idea of a “limit” being unreachable (Cornu, 1981) or
the term “gets close to” carrying the implication “not coincident with”
(Schwarzenberger & Tall, 1978). Ervynck (1981) has also documented
problems with limits and suggests the value of pictures to visualize the
processes involved. Standard pictures found in text-books have two
major problems: they are static, and so fail to fully convey the dynamic
nature of many of the concepts, and they also tend to be limited in
variety, leading to a restricted concept image being developed from too
few exemplars. For instance, the classical differential triangle is usually
drawn as in figure 1, with the increments δx, δy both positive and the



graph sitting neatly in the first quadrant. As Orton has observed, a
significant proportion of his students interpreted the symbolism

δy/δx → dy/dx
to mean “δy/δx gets smaller until it becomes dy/dx.”
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Figure 1

In an example such as figure 1, the gradient δy/δx does get smaller
until, to all intents and purposes, it is indistinguishable from dy/dx. By
simplifying the examples presented to students in this way, hoping to
help them in the initial stages, the net result may be a restricted concept
image in the student's mind which later conflicts with the formal theory
(Tall & Vinner, 1981).

The computer programs

To combat the conceptual limitations of the kind just described, a suite
of three computer programs were written by the first-named author to
help generate more appropriate concept images: Gradient, Area and
Blancmange. Gradient draws moving pictures of the gradient of a
graph, leading to ideas of differentiation, Blancmange draws an
everywhere continuous, nowhere differentiable function (Tall, 1982) to
prevent too limited a set of exemplars being encountered, and Area
computes and displays the area under a graph in various ways, leading
to ideas in integration.

Gradient and Area both allow the input of a function in normal
analytic notation (e.g. f(x)=sin2x or f(x)=(x2–1)1/2) and draw the
graph over a chosen range, indicated places where the function becomes
undefined or has an asymptote. Gradient offers two main routines, the
first simulating the limiting process at a point in which the chord is
drawn between two chosen points (a, f(a)), (b, f(b)) and then b moves in
steps to a as the gradient is displayed numerically on the screen. On one



computer (the 380Z) arithmetic accuracy is such that the gradient can
only be obtained to about three figures, seriously prejudicing the
concept image of the limiting process, but on another (the BBC) five
digit accuracy allows a much more successful simulation. Both
computers are markedly better in the second routine, displaying the
gradient as a function g(x)=(f(x+c)–f(x))/c, for fixed (non-zero) c and
variable x. To simulate this dynamically the program draws a sequence
of chords from x to x+c as x increases by steps, simultaneously plotting
the gradient of the chord as a point (x, g(x)). The static picture in figure
2 (a computer printout) fails to convey the impact of this idea, but the
moving picture on the screen, with the function and the step c specified
by the user, leaves an unforgettable impression so that the graph of g(x)
is visibly seen to be the gradient of the graph f(x).
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Figure 2

As one student put it. “I never understood what it meant to say that the
derivative of sinx was cosx until I saw it grow on the computer.”

The program Area also has two major routines, one to display the
approximate area under the graph as computed by various methods, the
other to draw the “area-so-far function” from a to x as a function of x.
Positive and negative areas are displayed in different colours and the
reasons for the signs become more obvious when it is realized that the
area is calculated as the product of two signed lengths drawn on the
screen. For instance, calculating the area from right to left has negative



step times the signed ordinate, giving a negative area above the axis and
positive area below.

The programs are designed both for demonstration purposes and for
student investigations, allowing students the freedom to explore and
enrich their concept images in a more personal way. It is interesting to
see the students regarding the computer as an authority which does not
present the same threat to them as the teacher. Indeed, they seem far
more willing to discuss conceptual difficulties thrown up by the
computer than they would difficulties in understanding a teacher’s
explanation.

Research

The second-named author has initiated two research studies using the
programs. A cross-sectional study is being conducted on a group of
about 30 A-level (= senior high school) students. The group is being
divided so that some use the Gradient program, some the Area program
and some both. A questionnaire is being administered to all the students
to assess their understanding on about 30 different concepts, including a
number pinpointed by the Orton study. The data is being analysed in an
attempt to identify those concepts that appear affected by the activities.

A longitudinal study is also being conducted on a group of twelve
adults attending a one year, two-evenings-a-week class designed to take
them to degree standard in mathematics. The continuous assessment and
teaching style of the small group discussion make this especially suitable
for a study that relies on interpreting written work and contributions to
the class. They have recently begun work on the calculus and used the
programs in groups of about six students each. Though the full analysis
must await the end of the course, preliminary impressions show some
interesting reactions.

In the first session the students used the computer to study the
gradient of the graph of sinx at a number of individual points. Initially
they were invited to choose points a,b quite far apart and to see that as
the step between the points decreased the gradients of the chords formed
no obvious pattern. They readily appreciated that the step had to be
relatively small before the sequence of values for the gradient
converged. There was interest and scepticism when for very small steps
the gradient began to wander again after having appeared to converge.
(This was the 380Z computer with limited accuracy.) They investigated
positive and negative steps and one group became interested in the
number of stages it took before the gradient stabilized, concluding that it
depended on the curvature of the graph at the point.

In the next session the students were introduced to the gradient
function, drawing sinx, cosx, then powers of x, and guessing the



formula for the derived function which was drawn and compared with
the gradient graph. They were very familiar with the graphs of standard
functions and correctly conjectured the derivatives in every case.
Exponential functions provided the first instance of student generated
work. The graph of 2x was drawn on the screen and the gradient
function plotted. The two curves were clearly related and it was
discovered by trial and error that the derived function was about 2 3 2 x ,
a quite reasonable approximation. The graph of 3x was similarly
examined and then ex. It became apparent that e was the number which,
when raised to the power x and differentiated, had a derivative which
equalled the original function. Further student investigations initiated by
the group led to various other conjectures, the pièce de résistance being
the conjecture that the derivative of arctan(x) was 1/(1+x2)!

The first session devoted to integration was noticeable for the large
amount of discussion around the idea of negative area. With many other
groups this has created no problems, but this time, principally among
students who were primary teachers, there was some resistance to
accepting the idea of negative area at all. The program was invaluable in
that it could focus the discussion on a picture where the students could
see why the area of a strip came out negative in a variety of cases, and
that integrating from a higher limit to a lower one gave the same answer
as the other way round, but with a change in sign. One group using the
program decided to find the “paintable area” between the curve and the
axis by dividing the calculations into segments above and below the axis
and taking the absolute value before adding. It was then realized that the
whole calculation could be done in one go by taking the original
function, squaring, then square-rooting before calculating the area. The
second group came to similar conclusions but used the abs function
instead.

The drawing of the “area-so-far function” from various arbitrary
points has naturally given a meaning to the constant of integration and
highlighted once more the importance of the change in sign when
integrating from high to low rather than vice versa.

It is too early to say what effect the computer has had on the
students’ responses to assessment questions, however, it is already
noticeable that graph-oriented questions submitted so far have been very
well done.

Most student reaction has been positive. One student remarked “It
was helpful, fantastic, just being able to draw the graphs … it would
have been such a hassle any other way.” Another said after the very first
session, “It’s interesting that it’s only looking at the graph that it’s made
any sense. You know I said I didn’t understand what the derived



function was all about – I could do all the odd things before but until
now I didn’t have a clue what it meant.”
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