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Our contemporary idea of the number line (Fig. 1)
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Figure 1

is to conceive it as a system of real numbers given by decimal expansions or, more
formally, as a complete ordered field. But it was not always so; prior to the
formalisation of the real number concept in the late nineteenth century the number
line was often considered to include infinitesimal quantities and their infinite
reciprocals. It is this ambivalence which is at the heart of the new theory of non-
standard analysis and which can be exploited to give a satisfactory theory of
infinitesimal calculus. Instead @henumber line we must imagin&o, a number
systemK of “constants” and a larger systdfh of “quantities.” To the naked eye a
pictorial representation of these would look the same, the number line of the picture
above, but the number li€* contains infinitesimal detail and infinite structure not
present irk.

The purpose of this paper is to present an elementary list of axioms to describe these
two number systems and to explain how the additional subtleties preséntmay

be represented pictorially in a satisfactory manner. The axioms are based on the work
of Keisler (1976a, 1976b) and the pictures are an extension of the microscopes and
telescopes of Stroyan (1972). There are essentially three parts to the axioms: first, to
distinguish betweeK andK*, second, to describe how to pass from the larger system
K* to the smaller systerK, and third, to describe how to pass in the opposite
direction fromK toK*. The first is easy. As every ordered field may be considered to
contain the rational numbers we can give a formal definition of a positive
infinitesimalx as an element satisfying

0 <x <, for every positive rational number

The distinction betweeK andK* is thatk* contains infinitesimals bu¢ does not. In
other words there are infinitesimal quantitiesKin but no infinitesimal constants (in

K). Because the reciprocal of a (positive) infinitesimal may be shown to be a
(positive) infinite element (greater than any rational number), there are also infinite
guantities inK*; on the other hand, all constants are finite. The passagekframK

is negotiated by insisting that every finite quanifyK* differs from a constant by an
infinitesimal:
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X = cte, (CUK, € infinitesimal).

This means that every quantity Kt is either infinite (and too far off to the left or
right to figure in a finite picture) or finite (and an infinitesimal quantity from a
constant, too close to distinguish in a normal scale picture). In Fegrepresents a
positive infinitesimal quantity.
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Figure 2

Whenx = ct+e as above, the constantvill be called theonstant part(or standard

part) of x and denoted bg=st(x). This gives us a magt from the finite elements of

K* to K. It does not allow us, as it stands, to see any infinite structure and it loses all
the infinitesimal detail. However, if we first alter the scale Khusing a map

M:K* - K* of the form

H(X) = (x=a)/d, (a,0L/K*, d#0),

we can move a portion ¢ into the finite part (usingl) and then applgtto reveal

an image irK. In this way we get a perfectly ordinary picture of the subtle structure
of K* that would otherwise be invisible to the naked eye. By takingp be
infinitesimal we see certain infinitesimal detail nearby takinga to be infinite we
see part of the infinite structure.

The final part of the axiomatic system, the passage KamK*, is more elusive. We
have to begin with a picture K" and somehow enrich it in an appropriate way to
give a picture inK*N with extra infinitesimal detail or infinite structure, as
appropriate. Any subs&CK* needs a corresponding subB&t1K*N whereDD*.

If D is given by simple formulae, such as the semicircle:

D = {(xy)JK2 | x2+y2<1,y>0},

including the straight edge but excluding all points on the circumference, then a
natural candidate fdd* is

D* = {(xy)0K*2 | x2+y2<1,y=0},

To the naked eyeD, D* look alike, butD* has enriched structure, including extra
guantities of the format+€, b+d) wherea, b are constantg, o arc infinitesimals and

(a+e)2+(b+8)2<1, b+5=0.

A similar process can be applied to any sulisegjiven as the solutions of a list of
formulae which are equalities or inequalities between polynomials in the coordinates.
More generally we suppose that ev®yiK"N extends tdD* whereDOD* JK*N and

every functionf:D - K extends td:D* - K* (agreeing withf on the subseD). An
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equality or inequality between functions, dag (wheref:D - K, gE - K) can be
interpreted as having solutions of the form

S(f<g) = {xOKN | xODNE, f(X)<g(xX)}.
and the broader set of solutions
S*(feg) = {xOK*N | xOD* nE*, f(X)<g(X)}

If a subsetXOKN were of the fornrX = S(kg), then we could také&* to be the
extended solution seX* = S*(f<g) This is the key that unlocks the whole
theory—and it took 300 years to formalise, from the first insightful steps in the
calculus by Newton in 1666 to the arrival of non-standard analysis (Robinson, 1966).

A list L is just a finite set of equalities or inequalities between functions from subsets
of KN to K. Its solution set &) is just the set of common solutionsKA! of all the
equalities or inequalities and its extended solutiorSgt) is just the corresponding

set of solutions ilk*N. If X = JL) then the extended skt is taken to be&X* = S*(L).

Example
If X = {(xy)OK2 |x =y2, x=0,y=0}, then
X* = {(xy)OK*2 | x =y2, x=0, y=0}.

In this caseX is the graph of the function=vx andX* can be taken as the graph of
the extended functiory,= Vx for xOK*, x=0.

In general we must make sure that if we were to describeXaiseétvo different ways

as a solution of a lisi = §L) = §M), then the two extended solution s&¥L),

S*(M) are the same. We shall assume this property in an equivalent form as the
fourth, and final, part of the axiomatic system.

The Subset Axionif. S(L)OS(M)for lists of formulad., M, thenS*(L)IS*(M).
Interchanging the roles &f, M, we immediately obtain:
The Extension Propertif. L) = S(M) thenS*(L) = S*(M).

1. The axioms

All the axioms have been introduced and now it is just a matter of assembling them in
a single list.

I. Constants and quantities

1(a). K is an ordered subfield of an ordered fi&lt

1(b). K* contains a non-zero infinitesimal bKitdoes not.
[1. Restriction

2. Every finite elemem/[K* is of the form

X = c+& (c UK, € infinitesimal).



[Il. Extension

3(a). Every DOKN has an extensioP0D*JK*N and every function
f:D - K has an extensidinD* — K* (agreeing withf onD).

3(b). If KN K is a polynomial, then its extension is the same
polynomial extended tg*N, f: K*N_ K*,

IV. Uniqueness

Using the notation introduced earlier,

4. (The Subset Axiom). For lists M,
SL)OSM) O S*L)OS*M).

These axioms are not minimal assumptions, for instance the statembritand the

fact that the extension function agrees wWittn D may both be deduced from the
other assumptions (in the manner of Keisler, 1976b, page 12). The phraseology given
here is one that has proved suitable for mathematics students beginning to study the
theory; at this stage the clarity of “extension functions and sets” proves to be more
valuable than the mathematician’s urge to give minimal axiomatic requirements.

Notice that the completeness axiom (every non-empty subgetwiich is bounded

above has a least upper bound) is not one of the given axioms. This is one of the most
difficult principles in analysis to grasp and its ramifications prove to be a stumbling
block for many studying analysis.

In essence the proof is as follows. The completeness axiom may be taken in the form

“every increasing sequence of real numbers which is bounded above
tends to a real limit.”

To establish the completeness property for the field of constgniis must be
established that a sequence s(1), s(2),.K,ibounded above by(i, has a limit in

K. This requires some routine computations (omitted here) that the fusdtionK
(whereN is the set of natural numbers 1, 2, ...) extends to a furetibn- K* where

the setN* contains infinite elements. (In fact every unboundedXsextends to a set

X* containing infinite elements.) It is then a straightforward matter to deduce that,
because

s(1) < s(n) < ¢, for everynN,
then
s(1) < s(n) < ¢, for everynIN*.

Thuss(n) is finite for infiniten and a routine calculation shows that the lihof the
sequence is

| = st(f(n)) for any infinitenI N*.

In the knowledge that this can be established from the axioms, when the dust settles
we see that the field of constants is a complete ordered field and so it can only be the
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field of real numbers. With this in mind, those who are meeting this system for the
first time can take heart in the fact that the axioms have a perfectly satisfactory
informal description as follows.

1(a). The ordinary number line of constants (which can be thought of
as limits of decimal expansions) are considered as part of a larger
number systenkK* of quantities which can also be thought of as a
number line and satisfy the usual rules of arithmetic (addition,
subtraction, multiplication, division and order).

1(b). All the ordinary constants are finite (in the sense that they can be
represented pictorially on a finite number line produced sufficiently far
in one direction or the other) but some quantitieK(ii are infinite

and too far off to be represented on such a finite line, no matter how
far produced. The reciprocals of such infinite quantities are
infinitesimal (smaller in size than any positive rational) and are
indistinguishable from zero to any normal scale.

2. If a quantityx is finite, then it is of the form=c+¢ wherec is an
ordinary constant anglis an infinitesimal (positive, negative or zero).

3(a). Every subsdd in ordinary constant spa¢d! can be enhanced to
a subseD* which looks the same d3 to the naked eye, but includes
additional quantities. (It may be shown that the extra elemerig of
arise in one of two ways: XK is a limit point of D, then D*
includes points infinitesimally close toand ifD is unbounded, then
D* includes infinite points.) Every function defined Brextends to
apply toD*.

3(b). In particular a polynomial function with constant coefficients
applies to quantities by using the same polynomial formula.

4. If L and M are finite lists of equalities or inequalities between
functions then if the constant solutions of all the formulak ere a
subset of the constant solutions of all the formulad,ithen the same
is true of the quantity solutions bfandM.

A good example of axiom 4 in action is the extension of a “piecewise defined
function.” ConsideD = {xUK | x>—1} andf:D - K given by

00 for —1<x<0
f(x)=%2x2 0s<x<1
Hx+1/x x>1

Then

S(—Xkx, x<0) 0 S(f(x)=0)
implies

S*(—1<x, x<0) O S*(f(x)=0)



and this tells us that all quantiti@gs]K* such that —4x<0 satisfyf(x)=0. The same
kind of thing works for the other two parts of the domain and so the extended function
f:D* - K* is just given by the same formulae as the original function, now applying to
X[OD* where

D* = {xOK* | x>-1}.

Both functions have graphs which look like this to a finite scale (Fig. 3).
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Figure 3

The extra structure of the graph of the extended function can be revealed in ordinary
pictures by using optical lenses.

2. The pictures

To represent details iK* in an ordinary picture, we follow the idea of Stroyan and
first move elements df* using the mapi:K* - K* given by

(X = (x=0)/3, (@, STK*, 5>0).

(We taked>0 because this maintains the order of points on the line, multiplying by a
negative number would reverse them.)

For instance, if we take=c, d=¢, then
p(c—) = —=1,u(c) = 0, u(c+e)=+1.

Hence the three points-€, ¢ andc+e (for constantt and positive infinitesimat)
which we mentioned as being indistinguishable to the naked eye in the introduction
are now spread out and mapped onto clearly distinct points -1, 0, 1 (Fig. 4).
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When using this map, however, a point[JK* such that X—c)/e is not finite cannot

be seen in the magnified picture. In general, the mamerep(x) = (x—a)/d will be

called thed-lens pointed at aThefield of viewof [ is the set ok[OK* such thaju(x)

is finite. The mapu translates the field of view and moves it to fill the whole set of
finite elements. Followingt by taking the constant part gives a map from the field of
view to the seK of constants which is called tlogtical &lens pointed ati. Optical
0-lenses are what give the required ordinary pictures of phenomena involving
infinitesimal and infinite quantities. They work just as well in two dimensions and
more generally im dimensions by applying a lens to each coordinate. For instance a
map

K*2  K*2
given by
H(x, y) = (—a)/3, (yvB)/0)

is called the &, p)-lens pointed atd, B). If d#p, we say that the lens &stigmatic.
Usually we shall také=p, in which case we simplify the notation and refeptas a
d0-lens in two dimensions. Following by taking the constant part of each quantity
then gives an opticdl-lens in two dimensions defined on the field of view and taking
constant values iKZ2.

As an example, let us look at the grdpt* — K* given byf(x)=x2 considered as the
subset

{(x, x2)OK*2 | xOK*}

Part of the finite portion of this graph is shown in Fig. 5.



Figure 5

To the naked eye it looks just like the ordinary graph of a parabola because the
infinitesimal detail is too small to see. It can be revealed by magnifying it through an
appropriate lens, saydlens pointed ata(a2). We have

H(x, Y) = (x-a)/3, (y-a2)/d).
A nearby poin{a+A, (a+)\)2) on the graph, when viewed througheveals
H((@a*+)), @*+N)?) = (MS, (2A+A2)/5)

Suppose that=A/d is finite, then for infinitesimal we must hava infinitesimal and
SOA2/3=)K is also infinitesimal. Taking constant parts, we have

sip(a+A, @ + A)2)) = (S\/3), s{2aN3+A2/3))
= (s(\/3), 2as(\/B))

for constanta. Puttingst(A/d)=I, we see that the points on the graph in the field of
view are mapped on to a straight limg2al) asl varies.

As in Tall (1980) it is a useful device to use the “map-making technique” of denoting
the pictorial image by the same symbol as the original point. This is analogous to
calling the place on a map “London” rather than “the image of London on this map.”
In the given example this means denoting the imggdaal) by the original symbol
(a+A, (@+A)?) and the image (0, 0) (whede=0) by @, a2), giving the following
picture (Fig. 6).
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Lenses of different types are named as follows: if infinitesimal then the lens is
called amicroscopeif dis finite and not infinitesimal, then the lens isvandow,if o

is infinite the lens is anacroscopeA window pointed at a point with at least one
infinite coordinate is called telescope(These definitions modify those | gave in
Tall, 1980, and bring them into line with the definitions of “microscope” and
“telescope” used by Stroyan, 1972.) Microscopes reveal infinitesimal details (as in the
above example), windows retain essentially the same scale, but used as telescopes
they pull in structure at infinity, macroscopes allow one to “stand back” and see an
infinite range. Microscopes and telescopes prove to be the most useful; through an
optical microscope a differentiable function looks like a straight line and through an
optical telescope two asymptotic curves look identical.

Of course a microscope does not reahthe infinitesimal detail, just as in real life
microscopes of different magnifications are needed to reveal different levels of
accuracy. Given any, 6 0 K*, we say thak is of lower orderthan d if x/d is
infinitesimal, it is thesame ordeif x/d is finite but not infinitesimal andigher order

if x/dis infinite. Ad-lens pointed atx reveals details which differ froon by the same
order asd. Higher order detail is too small to see and lower order detail is too far
away to be in the field of view. Two points in the field of view which differ by a
guantity of higher order thamlook the same through an optiéalens.

3. Applications

Infinitesimal notions prove a natural way to express the basic ideas of calculus and
analysis, for instance, continuity, differentiability, the fundamental theorem of
calculus, asymptotes and convergence. Some of these ideas will now be illustrated by
examples.

Example 1: ContinuityA function f:D - K is continuous aalD in infinitesimal
terms if

XOD*, st(x)=a impliesst(f(x))=f(a).



In other words, ifx anda are infinitely close together, so di(®), f(a). The function
f:D - K given byD = {xUK | x>-1}

00 for —1<x<0
f(x)=%2x2 0s<x<1
Hx+1/x x>1

is continuous everywhere iD. For instance, it is continuous at0 because if
st(x)=0, thenx is infinitesimal and

f(x)=0 for x negative,

f (x) = 2x2 for x positive;
then

st(f(x)) = 0 =f(0)
in both cases.

(Note: Twocommon misconceptions about continuity are that a continuous function
must be given by a single formula or that the graph must be in a single piece.
Example 1 shows that a function given by different formulae on different subintervals
can be continuous. The functidfx)=1/x on the domain X[OR | x£0} gives an
example of a continuous function whose grapfois'in one piece”; it is, however, in

one piece over each connected piece of the domain, namelyxwben whenx>0. A
further discussion of this idea occurs in Tall, 1982.)

Example 2: Differentiabilitylf a functionf:D - K is differentiable ata[/D, then an
optical microscope pointed areveals the graph as being a straight line. In
infinitesimal terms we say théts differentiable ah[ID with derivativef '(a)CIK if

JOf@+e)-1()
&

O_ «
D D_ f (a)
for all (non-zero) infinitesimad with a+e[D*.

For instance, the functidnof example 1 is differentiable a0 with derivativef '(0)
= 0 becausef(0+€) (0))/e equals

0, fore<0
and
2¢, for e>0.
In each case the constant part is 0.

Viewing the graph of through a microscope pointed at (0, 0) reveals an infinitesimal
portion of the graph as an (optical) straight line.

The same function is not differentiablexatl, however, for a simple calculation gives

Of(l+e)-f()pg_HAfore<0
st Ao .
d c g fore>0
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It is a simple extension of the theory to see that the left derivative and right derivative
both exist here, with and so values 4, 0, respectively.

In general, if left and right derivatives both exist, viewed through an optical
microscope the graph looks like the meeting of two straight half lines (Fig. 7).

A

optical microscope
pointing at (1,2)

optical microscope
pointing at (0,0)

Figure 7

Example 3: Asymptotedsymptotic curves look identical when viewed through an
optical telescope (Fig. 8). For instance, the curf(@sx+1/x andg(x)=x are
asymptotic. If &-lens is pointed atg, w) for =1 and infinitew, then for finiteh and
x=w+h we have the difference betweggoordinates is

st((f(w+h)-g(w+h))/1)

= st(w* 1/(er+h)—w) = 0,
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Example 4: Integrationintegrating a continuous function is straightforward in
infinitesimal terms, thinking of the integral geometrically as the area under the graph.
Let f:D - K be a continuous function and suppose fhabntains the interval] b],

then if A(t) is the area under the graph fram a to x =t, we haveA(t +£)-A(t) is the

area fronx =t to x =t+¢. Takinge to be infinitesimal, then the continuity bives

f(t+d) to be infinitesimally close td(t) for all t+0 in the interval fromt to t+e.
Viewing the picture through aastigmaticlens (Fig. 9), which leaves the vertical
scale unchanged, but expands the horizontal scale by a faktand/taking constant
parts to lose the infinitesimal detail, the infinitesimal element of areeeAMA(L) is
revealed as eectangle heightf(t), widthe. Thus

A(t+€)-A(t) =f(t) x € + higher order terms
and so
M =f(t) + infinitesimal terms.
Taking the constant part, we get
A'(t) =1(t).
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Example 5: Convergencdll the usual convergence notions can be dealt with in
simple infinitesimal terms. For instance, a sequeagg ¢onverges ta if stiay) = a

for all infinite N. (Think of the sequence as a functai - K whereN is the set of
natural numbers, extend &N * - K* and take infiniteN in N) Likewise. a sequence
(an) is a Cauchy sequenceafi—ay is infinitesimal for all infiniteM, NCIN*.

The most enlightening cases occur with convergenderadtions.For instance, the
Fourier series with
sin(2n-1)x

F.(X)=sinx+isin3x+...+
(%) 3 2n-1

has the limit
O-m/4 for-m<x<O0
F(x):E 0 forx=0,m1
Bnl4 forO<x<m

with values repeating with peridit

The sequence ofontinuousfunctionsF1, F2, ... has adiscontinuoudimit F.
Furthermore, the functioRp has a maximum at = 17(2n) which persists as grows

large, giving spikes approximately 1.179 times higher than the horizontal part of the
limit function. This is called Gibb’s phenomenon. In ordinary analysis the behaviour
seems somewhat anomalous. But in infinitesimal terms it has a simple explanation
(Cleave, 1971). For infinitae the graph is similar in nature to the picture for lange

The Gibb’s spike still occurs af(2n) but now thisx-value is infinitesimal and so the
graph is almost a vertical line segment. Viewed through an optical window the picture
is a vertical line segment through the origin, rising up to the Gibb’s spike then (with
infinitesimal wobbles) it settles down to the horizontal segment of the limit curve.
Thus infinitesimal analysis reveals a behaviour familiar to any engineer trying to
generate a square wave which does not have such a natural explanation in the limit
theory of ordinary analysis.
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Rather than perform the necessary calculations, an analogous phenomenon can be
demonstrated using graphs made out of straight lines. The function

1 forx<-1/n
fn(x)=Enx for-1/n<x<1/n
B 1 forx>1/n

(Fig. 10).

A fn(®)

: P
—1/n 1/n X
Figure 10
tends to the limit function
0-1 for x<O0
f(x)=% 0 forx=0
H 1 forx>0
(Fig.11).
P

Figure 11
But for infinite N, the graph ofy is given by the same formula as for a finite integer
n, namely

0-1 forx<-1/N
f,0)=HNx for-1/N<x<1/N.
H 1 forx>1/N
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BecauseN is infinite, the line segment betweew—1/N and x=1/N has infinite
gradient. Looking at the graph ff through an optical window given a picture which
is the natural limit picture of the graphsfgf though it is not the graph of a function,
namely a horizontal half-ling=—1 forx<0, a vertical line segment from (0,-1) to
(0,1) and a horizontal half-lire=1 forx>0 (Fig. 12).

Figure 12
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