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Our contemporary idea of the number line (Fig. 1)
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Figure 1

is to conceive it as a system of real numbers given by decimal expansions or, more
formally, as a complete ordered field. But it was not always so; prior to the
formalisation of the real number concept in the late nineteenth century the number
line was often considered to include infinitesimal quantities and their infinite
reciprocals. It is this ambivalence which is at the heart of the new theory of non-
standard analysis and which can be exploited to give a satisfactory theory of
infinitesimal calculus. Instead of one number line we must imagine two, a number
system K of “constants” and a larger system K* of “quantities.” To the naked eye a
pictorial representation of these would look the same, the number line of the picture
above, but the number line K* contains infinitesimal detail and infinite structure not
present in K.

The purpose of this paper is to present an elementary list of axioms to describe these
two number systems and to explain how the additional subtleties present in K* may
be represented pictorially in a satisfactory manner. The axioms are based on the work
of Keisler (1976a, 1976b) and the pictures are an extension of the microscopes and
telescopes of Stroyan (1972). There are essentially three parts to the axioms: first, to
distinguish between K and K*, second, to describe how to pass from the larger system
K* to the smaller system K, and third, to describe how to pass in the opposite
direction from K to K*. The first is easy. As every ordered field may be considered to
contain the rational numbers we can give a formal definition of a positive
infinitesimal x as an element satisfying

0 < x < r, for every positive rational number r .

The distinction between K and K*  is that K*  contains infinitesimals but K does not. In
other words there are infinitesimal quantities (in K* ) but no infinitesimal constants (in
K). Because the reciprocal of a (positive) infinitesimal may be shown to be a
(positive) infinite element (greater than any rational number), there are also infinite
quantities in K* ; on the other hand, all constants are finite. The passage from K*  to K
is negotiated by insisting that every finite quantity x∈ K*  differs from a constant by an
infinitesimal:
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x = c+ε,  (c∈ K, ε infinitesimal).

This means that every quantity in K*  is either infinite (and too far off to the left or
right to figure in a finite picture) or finite (and an infinitesimal quantity from a
constant, too close to distinguish in a normal scale picture). In Fig. 2, ε represents a
positive infinitesimal quantity.
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When x = c+ε as above, the constant c will be called the constant part (or standard
part) of x and denoted by c=st(x). This gives us a map st from the finite elements of
K*  to K. It does not allow us, as it stands, to see any infinite structure and it loses all
the infinitesimal detail. However, if we first alter the scale on K* using a map
µ:K*→K* of the form

µ(x) = (x–α)/δ,  (α ,δ∈ K*, δ≠0),

we can move a portion of K* into the finite part (using µ) and then apply st to reveal
an image in K. In this way we get a perfectly ordinary picture of the subtle structure
of K* that would otherwise be invisible to the naked eye. By taking δ to be
infinitesimal we see certain infinitesimal detail near α; by taking α  to be infinite we
see part of the infinite structure.

The final part of the axiomatic system, the passage from K to K* , is more elusive. We
have to begin with a picture in Kn and somehow enrich it in an appropriate way to
give a picture in K* n, with extra infinitesimal detail or infinite structure, as
appropriate. Any subset D⊆ K*  needs a corresponding subset D* ⊆ K*n where D⊆ D*.
If D is given by simple formulae, such as the semicircle:

D = {(x,y)∈ K2 | x2+y2<1, y≥0},

including the straight edge but excluding all points on the circumference, then a
natural candidate for D*  is

D*  = {(x,y)∈ K*2 | x2+y2<1, y≥0},

To the naked eye, D, D* look alike, but D* has enriched structure, including extra
quantities of the form (a+ε, b+δ) where a, b are constants, ε, δ arc infinitesimals and

 (a+ε)2+(b+δ)2<1,  b+δ≥0.

A similar process can be applied to any subset D given as the solutions of a list of
formulae which are equalities or inequalities between polynomials in the coordinates.
More generally we suppose that every D⊆ Kn extends to D* where D⊆ D* ⊆ K*n and
every function f:D→K extends to f:D*→K* (agreeing with f on the subset D). An
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equality or inequality between functions, say f≤g (where f:D→ K, g:E→K) can be
interpreted as having solutions of the form

S(f≤g) = {x∈ Kn | x∈ D∩E,  f(x)≤g(x)}.

and the broader set of solutions

S*(f≤g) = {x∈ K*n | x∈ D*∩E*,  f(x)≤g(x)}

If a subset X⊆ Kn were of the form X  = S(f≤g), then we could take X* to be the
extended solution set X* = S*(f≤g) This is the key that unlocks the whole
theory—and it took 300 years to formalise, from the first insightful steps in the
calculus by Newton in 1666 to the arrival of non-standard analysis (Robinson, 1966).

A list L is just a finite set of equalities or inequalities between functions from subsets
of Kn to K. Its solution set S(L) is just the set of common solutions in Kn of all the
equalities or inequalities and its extended solution set S*(L) is just the corresponding
set of solutions in K*n. If X = S(L) then the extended set X* is taken to be X* = S*(L).

Example

If X = {(x,y)∈ K2 | x = y2, x≥0, y≥0}, then

X* = {(x,y)∈ K*2 | x = y2, x≥0, y≥0}.

In this case X is the graph of the function y = √x and X* can be taken as the graph of
the extended function, y = √x for x∈ K* , x≥0.

In general we must make sure that if we were to describe a set X in two different ways
as a solution of a list, X = S(L) = S(M), then the two extended solution sets S*(L),
S*(M) are the same. We shall assume this property in an equivalent form as the
fourth, and final, part of the axiomatic system.

The Subset Axiom. If S(L)⊆ S(M) for lists of formulae L, M, then S*(L)⊆ S*(M).

Interchanging the roles of L, M, we immediately obtain:

The Extension Property. If S(L) = S(M) then S*(L) = S*(M).

1. The axioms

All the axioms have been introduced and now it is just a matter of assembling them in
a single list.

I. Constants and quantities

1(a). K is an ordered subfield of an ordered field K* .

1(b). K* contains a non-zero infinitesimal but K does not.

II. Restriction

2. Every finite element x∈ K*  is of the form

x = c+ε  (c ∈ K, ε infinitesimal).
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III. Extension

3(a). Every D⊆ Kn has an extension D⊆ D* ⊆ K* n and every function
f:D→K has an extension f:D* →K* (agreeing with f on D).

3(b). If f:Kn→K is a polynomial, then its extension is the same
polynomial extended to K*n,  f: K*n→K*.

IV. Uniqueness

Using the notation introduced earlier,

4. (The Subset Axiom). For lists L, M,

S(L)⊆ S(M) ⇒ S*(L)⊆ S*(M).

These axioms are not minimal assumptions, for instance the statement D⊆ D* and the
fact that the extension function agrees with f on D may both be deduced from the
other assumptions (in the manner of Keisler, 1976b, page 12). The phraseology given
here is one that has proved suitable for mathematics students beginning to study the
theory; at this stage the clarity of “extension functions and sets” proves to be more
valuable than the mathematician’s urge to give minimal axiomatic requirements.

Notice that the completeness axiom (every non-empty subset of K which is bounded
above has a least upper bound) is not one of the given axioms. This is one of the most
difficult principles in analysis to grasp and its ramifications prove to be a stumbling
block for many studying analysis.

In essence the proof is as follows. The completeness axiom may be taken in the form

“every increasing sequence of real numbers which is bounded above
tends to a real limit.”

To establish the completeness property for the field of constants K, it must be
established that a sequence s(1), s(2),… in K, bounded above by c∈ K, has a limit in
K. This requires some routine computations (omitted here) that the function s:N→K
(where N is the set of natural numbers 1, 2, ...) extends to a function s:N*→K* where
the set N* contains infinite elements. (In fact every unbounded set X extends to a set
X*  containing infinite elements.) It is then a straightforward matter to deduce that,
because

s(1) ≤ s(n) ≤ c, for every n∈ ΝΝΝΝ,

then

s(1) ≤ s(n) ≤ c, for every n∈ ΝΝΝΝ* .

Thus s(n) is finite for infinite n and a routine calculation shows that the limit l of the
sequence is

l = st(f(n)) for any infinite n∈ ΝΝΝΝ*.

In the knowledge that this can be established from the axioms, when the dust settles
we see that the field of constants is a complete ordered field and so it can only be the
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field of real numbers. With this in mind, those who are meeting this system for the
first time can take heart in the fact that the axioms have a perfectly satisfactory
informal description as follows.

1(a). The ordinary number line of constants (which can be thought of
as limits of decimal expansions) are considered as part of a larger
number system K*  of quantities which can also be thought of as a
number line and satisfy the usual rules of arithmetic (addition,
subtraction, multiplication, division and order).

1(b). All the ordinary constants are finite (in the sense that they can be
represented pictorially on a finite number line produced sufficiently far
in one direction or the other) but some quantities (in K* ) are infinite
and too far off to be represented on such a finite line, no matter how
far produced. The reciprocals of such infinite quantities are
infinitesimal (smaller in size than any positive rational) and are
indistinguishable from zero to any normal scale.

2. If a quantity x is finite, then it is of the form x=c+ε where c is an
ordinary constant and ε is an infinitesimal (positive, negative or zero).

3(a). Every subset D in ordinary constant space Kn can be enhanced to
a subset D* which looks the same as D to the naked eye, but includes
additional quantities. (It may be shown that the extra elements of D*
arise in one of two ways: if x∈ Kn is a limit point of D, then D*
includes points infinitesimally close to x and if D is unbounded, then
D* includes infinite points.) Every function defined on D extends to
apply to D* .

3(b). In particular a polynomial function with constant coefficients
applies to quantities by using the same polynomial formula.

4. If L and M are finite lists of equalities or inequalities between
functions then if the constant solutions of all the formulae in L are a
subset of the constant solutions of all the formulae in M, then the same
is true of the quantity solutions of L and M.

A good example of axiom 4 in action is the extension of a “piecewise defined
function.” Consider D = {x∈ K | x≥–1} and f:D→K given by

f (x) =
0 for −1 ≤ x ≤ 0

2x2 0 ≤ x ≤ 1

x +1 / x x >1







Then

S(–1≤x, x≤0) ⊆ S(f(x)=0)

implies

S*(–1≤x, x≤0) ⊆ S*(f(x)=0)
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and this tells us that all quantities x∈ K*  such that –1≤x≤0 satisfy f(x)=0. The same
kind of thing works for the other two parts of the domain and so the extended function
f:D* →K* is just given by the same formulae as the original function, now applying to
x∈ D* where

D* = {x∈ K*  | x≥–1}.

Both functions have graphs which look like this to a finite scale (Fig. 3).
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Figure 3

The extra structure of the graph of the extended function can be revealed in ordinary
pictures by using optical lenses.

2. The pictures

To represent details in K* in an ordinary picture, we follow the idea of Stroyan and
first move elements of K* using the map µ:K*→K* given by

µ(x) = (x–α)/δ,  (α , δ∈ K* , δ>0).

(We take δ>0 because this maintains the order of points on the line, multiplying by a
negative number would reverse them.)

 For instance, if we take α=c, δ=ε, then

µ(c–ε) = –1, µ(c) = 0, µ(c+ε)=+1.

Hence the three points c–ε, c and c+ε (for constant c and positive infinitesimal ε)
which we mentioned as being indistinguishable to the naked eye in the introduction
are now spread out and mapped onto clearly distinct points –1, 0, 1 (Fig. 4).
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When using this map µ, however, a point x∈ K* such that (x–c)/ε is not finite cannot
be seen in the magnified picture. In general, the map µ where µ(x) = (x–α)/δ will be
called the δ-lens pointed at a. The field of view of µ is the set of x∈ K* such that µ(x)
is finite. The map µ translates the field of view and moves it to fill the whole set of
finite elements. Following µ by taking the constant part gives a map from the field of
view to the set K of constants which is called the optical δ-lens pointed at α . Optical
δ-lenses are what give the required ordinary pictures of phenomena involving
infinitesimal and infinite quantities. They work just as well in two dimensions and
more generally in n dimensions by applying a lens to each coordinate. For instance a
map

µ:K*2→K*2

given by

µ(x, y) = ((x–α)/δ, (y–β)/ρ)

is called the (δ, ρ)-lens pointed at (α , β). If δ≠ρ, we say that the lens is astigmatic.
Usually we shall take δ=ρ, in which case we simplify the notation and refer to µ as a
δ−lens in two dimensions. Following µ by taking the constant part of each quantity
then gives an optical δ−lens in two dimensions defined on the field of view and taking
constant values in K2.

As an example, let us look at the graph f:K* →K*  given by f(x)=x2 considered as the
subset

{( x, x2)∈ K*2 | x∈ K* }

Part of the finite portion of this graph is shown in Fig. 5.
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To the naked eye it looks just like the ordinary graph of a parabola because the
infinitesimal detail is too small  to see. It can be revealed by magnifying it through an
appropriate lens, say a δ-lens pointed at (a,a2). We have

µ(x, y) = ((x–a)/δ, (y–a2)/δ).

A nearby point (a+λ, (a+λ)2) on the graph, when viewed through µ reveals

µ((a+λ), (a+λ)2) = (λ/δ, (2aλ+λ2)/δ)

Suppose that κ=λ/δ is finite, then for infinitesimal δ we must have λ infinitesimal and
so λ2/δ=λκ  is also infinitesimal. Taking constant parts, we have

st(µ(a+λ, (a + λ)2)) = (st(λ/δ), st(2aλ/δ+λ2/δ))

= (st(λ/δ), 2ast(λ/δ))

for constant a. Putting st(λ/δ)=l, we see that the points on the graph in the field of
view are mapped on to a straight line (l, 2al) as l varies.

As in Tall (1980) it is a useful device to use the “map-making technique” of denoting
the pictorial image by the same symbol as the original point. This is analogous to
calling the place on a map “London” rather than “the image of London on this map.”
In the given example this means denoting the image (l, 2al) by the original symbol
(a+λ, (a+λ)2) and the image (0, 0) (where λ=0) by (a, a2), giving the following
picture (Fig. 6).
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Lenses of different types are named as follows: if δ is infinitesimal then the lens is
called a microscope, if δ is finite and not infinitesimal, then the lens is a window, if δ
is infinite the lens is a macroscope. A window pointed at a point with at least one
infinite coordinate is called a telescope. (These definitions modify those I gave in
Tall, 1980, and bring them into line with the definitions of “microscope” and
“telescope” used by Stroyan, 1972.) Microscopes reveal infinitesimal details (as in the
above example), windows retain essentially the same scale, but used as telescopes
they pull in structure at infinity, macroscopes allow one to “stand back” and see an
infinite range. Microscopes and telescopes prove to be the most useful; through an
optical microscope a differentiable function looks like a straight line and through an
optical telescope two asymptotic curves look identical.

Of course a microscope does not reveal all the infinitesimal detail, just as in real life
microscopes of different magnifications are needed to reveal different levels of
accuracy. Given any x, δ ∈  K* , we say that x is of lower order than δ if x/δ is
infinitesimal, it is the same order if x/δ is finite but not infinitesimal and higher order
if x/δ is infinite. A δ-lens pointed at α  reveals details which differ from α  by the same
order as δ. Higher order detail is too small to see and lower order detail is too far
away to be in the field of view. Two points in the field of view which differ by a
quantity of higher order than δ look the same through an optical δ-lens.

3. Applications

Infinitesimal notions prove a natural way to express the basic ideas of calculus and
analysis, for instance, continuity, differentiability, the fundamental theorem of
calculus, asymptotes and convergence. Some of these ideas will now be illustrated by
examples.

Example 1: Continuity. A function f:D→K is continuous at a∈ D in infinitesimal
terms if

    .x∈ D*, st(x)=a implies st(f(x))=f(a).
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In other words, if x and a are infinitely close together, so are f(x), f(a). The function
f:D→K given by D = {x∈ K | x≥–1}

f (x) =
0 for −1 ≤ x ≤ 0

2x2 0 ≤ x ≤ 1

x +1 / x x >1







is continuous everywhere in D. For instance, it is continuous at a=0 because if
st(x)=0, then x is infinitesimal and

f(x)=0 for x negative,

f (x) = 2x2 for x positive;

then

st(f(x)) = 0 = f(0)

in both cases.

(Note: Two common misconceptions about continuity are that a continuous function
must be given by a single formula or that the graph must be in a single piece.
Example 1 shows that a function given by different formulae on different subintervals
can be continuous. The function f(x)=1/x on the domain {x∈ R | x≠0} gives an
example of a continuous function whose graph is not “in one piece”; it is, however, in
one piece over each connected piece of the domain, namely when x<0 or when x>0. A
further discussion of this idea occurs in Tall, 1982.)

Example 2: Differentiability. If a function f:D→K is differentiable at a∈ D, then an
optical microscope pointed at a reveals the graph as being a straight line. In
infinitesimal terms we say that f is differentiable at a∈ D with derivative f '(a)∈ K if

st
f (a + ε ) − f (a)

ε




 = ′f (a)

for all (non-zero) infinitesimal ε with a+ε∈ D*.

For instance, the function f of example 1 is differentiable at x=0 with derivative f '(0)
= 0 because (f(0+ε) –f(0))/ε equals

0, for ε<0

and

2ε, for ε>0.

In each case the constant part is 0.

Viewing the graph of f through a microscope pointed at (0, 0) reveals an infinitesimal
portion of the graph as an (optical) straight line.

The same function is not differentiable at x=1, however, for a simple calculation gives

st
f (1+ ε ) − f (1)

ε




 =

4 for ε < 0

0 for ε > 0




.
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It is a simple extension of the theory to see that the left derivative and right derivative
both exist here, with and so values 4, 0, respectively.

In general, if left and right derivatives both exist, viewed through an optical
microscope the graph looks like the meeting of two straight half lines (Fig. 7).
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—1 321
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Figure 7

Example 3: Asymptotes. Asymptotic curves look identical when viewed through an
optical telescope (Fig. 8). For instance, the curves f(x)=x+1/x and g(x)=x are
asymptotic. If a δ-lens is pointed at (ω, ω) for δ=1 and infinite ω, then for finite h and
x=ω+h we have the difference between y-coordinates is

st((f(ω+h)–g(ω+h))/1)

= st(ω+1/(ω+h)–ω) = 0.
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Example 4: Integration. Integrating a continuous function is straightforward in
infinitesimal terms, thinking of the integral geometrically as the area under the graph.
Let f:D→K be a continuous function and suppose that D contains the interval [a, b],
then if A(t) is the area under the graph from x = a to x = t, we have A(t +ε)–A(t) is the
area from x = t to x = t+ε. Taking ε to be infinitesimal, then the continuity of f gives
f(t+δ) to be infinitesimally close to f(t) for all t+δ in the interval from t to t+ε.
Viewing the picture through an astigmatic lens (Fig. 9), which leaves the vertical
scale unchanged, but expands the horizontal scale by a factor 1/δ, and taking constant
parts to lose the infinitesimal detail, the infinitesimal element of area A(t+ε)–A(t) is
revealed as a rectangle, height f(t), width ε. Thus

          A(t+ε)–A(t) = f(t) x ε + higher order terms

and so
A(t + ε ) − A(t)

ε
 = f(t) + infinitesimal terms.

Taking the constant part, we get

A'(t) = f(t).
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Example 5: Convergence. All the usual convergence notions can be dealt with in
simple infinitesimal terms. For instance, a sequence (an) converges to a if st(aN) = a
for all infinite N. (Think of the sequence as a function a:N→K where N is the set of
natural numbers, extend to a:N*→K*  and take infinite N in N) Likewise. a sequence
(an) is a Cauchy sequence if aM–aN is infinitesimal for all infinite M, N∈ N* .

The most enlightening cases occur with convergence of functions. For instance, the
Fourier series with

  
Fn (x) = sin x + 1

3 sin3x+K+ sin(2n −1)x
2n −1

has the limit

F(x) =
−π / 4 for − π < x < 0

0 for x = 0,π
π / 4 for 0 < x < π







with values repeating with period 2π.

The sequence of continuous functions F 1, F2, … has a discontinuous limit F.
Furthermore, the function Fn has a maximum at x = π/(2n) which persists as n grows
large, giving spikes approximately 1.179 times higher than the horizontal part of the
limit function. This is called Gibb’s phenomenon. In ordinary analysis the behaviour
seems somewhat anomalous. But in infinitesimal terms it has a simple explanation
(Cleave, 1971). For infinite n the graph is similar in nature to the picture for large n.
The Gibb’s spike still occurs at π/(2n) but now this x-value is infinitesimal and so the
graph is almost a vertical line segment. Viewed through an optical window the picture
is a vertical line segment through the origin, rising up to the Gibb’s spike then (with
infinitesimal wobbles) it settles down to the horizontal segment of the limit curve.
Thus infinitesimal analysis reveals a behaviour familiar to any engineer trying to
generate a square wave which does not have such a natural explanation in the limit
theory of ordinary analysis.
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Rather than perform the necessary calculations, an analogous phenomenon can be
demonstrated using graphs made out of straight lines. The function

f n (x) =
−1 for x < −1 / n

nx for −1 / n ≤ x ≤ 1 / n

1 for x >1 / n







 (Fig. 10).
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tends to the limit function

f (x) =
−1 for x < 0

0 for x = 0

1 for x > 0







(Fig.11).

Figure 11

But for infinite N, the graph of fN is given by the same formula as for a finite integer
n, namely

f N (x) =
−1 for x < −1 / N

Nx for −1 / N ≤ x <1 / N

1 for x >1 / N






.
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Because N is infinite, the line segment between x=–1/N and x=1/N has infinite
gradient. Looking at the graph of fN through an optical window given a picture which
is the natural limit picture of the graphs of fN, though it is not the graph of a function,
namely a horizontal half-line x=–1 for x<0, a vertical line segment from (0,–1) to
(0,1) and a horizontal half-line x=1 for x>0 (Fig. 12).

Figure 12
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