
Comments on the Difficulty and Validity 
of Various Approaches to the Calculus 
DAVIDTALL 

With the introduction of new infinitesimal methods in the 
last two decades, there are now available a number of dif
ferent approaches to the calculus. In her perceptive review 
essay on "Infinitesimal Calculus" [3]. Peggi Marchi raised 
a number of important points worthy of comment. The first 
concerned the validity of the "old infinitesimal calculus". 
Her implication was that this is a flawed theory, a judgment 
which has been made by most mathematicians over the last 
three centuries. My major aim in this article is to show that 
this judgment is a matter of interpretation of the meaning of 
the ideas and the context in which they are used and that, 
given a suitable context, the methods are perfectly 
satisfactory. A possible source of error in the method which 
arises in university analysis does not arise in the more re
stricted context of school or college calculus, nor did it arise 
in the original theory of Leibniz. It can be eliminated in a 
simple way. 

My second aim is to go some way towards answering 
Peggy Marchi 's questions: 
"Why are infinitesimal simpler and more intuitive than 
epsilon-deltas" (page 38), 
''Calculus proofs are easy in the hyperreals but hard in 
the reals ... why is this the case?" (page 42), 
"Why is the intuitive picture of the hyperreals easy and 
the rigorous picture of the hyperreals difficult?" (page 
41). 
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My final aim is to show how all these considerations arise 
out of old-style school calculus in a natural way and to put 
the case that this form of calculus, suitably interpreted, is 
mathematically correct and forms the best basis for begin
ning calculus, especially when allied to modern numerical 
and pictorial devices available on the computer. 

Let us begin by considering some of the many approaches 
to the calculus and the different meanings attributed to the 
concepts. 

(i) The "old. intuitive. infinitesimal method" 
To differentiate a function y = f(x) in the original Leibniz 
method, the variable x is incremented by an infinitesimal 
quantity dx and the dependent variable y is then incremented 
by y+dy = f(x+dx). The derivative f(x) (using modern 
notation) is then the quotient dy/dx, and in computing this 
derivative, any "higher order" infinitesimal quantities are 
neglected. For instance, if f(x) = x3, then 

dy/dx=(f(x+dx)-f(x»/dx = «(x+dx)3-x3)/dx 
= 3x2 + 3xdx + dx2. 

The quantity 3xdx+dx2 is infinitesimal and is neglected, 
leaving the derivative dy/dx to be 3x2. 

(ii) The "dynamic limit method" 
Here the calculations are similar to (i). We let h be a vari
able real number and compute the ratio (f(x+h)-f(x»/h, 

then allowing h to get closer and closer to zero. In this 
process, if the ratio approaches a limiting value, we take 
this limiting value to be the derivativef(x). Often the sym
bol & is used instead of h and oy instead off(x+h)-f(x), so 
that we think of the ratio oy /& getting closer and closer to 
the limit/ex). By blending the notation of this method with 
that of Leibniz we arrive at the idea that dy/dx is the limit of 
the ratio oy/& as & approaches zero. Often the ratio dy/dx 
is now interpreted as a compound symbol. It is not to be 
thought of as the quotient of dy by dx and the symbols dy 
and dx have no meaning in themselves. Even so, the sym
bolism is used to advantage in remembering formulae like 

!!L 
= 

dv du 

dx du dx 
though the student may be told that it is only a convenient 
memory device. He may even be told that he can cancel the 
. 'du" mentally, but must not mark the cancellation on 
paper! 

Matters are further complicated by the school of thought 
that defines dx and dy by dx = ox and dy = /(x)dx. This 
school considers dy/dx to be a quotient once more, but 
arising out of the definition of dy in terms of/ (x) and dx, 
rather than the computation of/ex) as a quotient of given 
quantities. 

It is one ofthese variants of the dynamic limit method 
that is used in old-style school calculus. In England the 
teaching of analysis at universities is complicated by the 
fact of the students coming from school backgrounds where 
a variety of subtle shades of interpretation of meanings ·are 
current. 

(iii) The "numerical method" 
The derivative/ex) can be computed for a specific numeri
cal value of x by tabulating values of h against  
For instance, when x = I we have: 

h 

1 
0-1 

0-001 

10-10 

-1 
-0-1 

-0-001 

_10-10 

(j(x + h) -f(x) )/h 

7 
. 3-31 
3-003001 

3-00000000030000000001 

1 
2-71 

2-997001 

-2-9999999997000000000 1 

From this table we see that as h tends to zero from either 
side the values in the second column tend to 3. 

(iv) The "computer drawing method" 
To find the derivativef(x) for a specific numerical value of 

16 
For the Learning of Mathematics 2, 2 (November 1981) 
FLM Publishing Association, Montreal, Quebec, Canada 



x, tell a computer to plot the graph of f over a small interval 
[x-a,x+a] and draw it to a highly magnified scale. Figure 
1 gives computer printouts of f(x) = x3 over the specified 
intervals centred on x = 1. To a suitable scale the computer 
drawing is (within its limits of accuracy) a straight line. The 
derivative f' (x) is the gradient of this straight line. The key 
is to get the size of interval small enough to give a straight 
line, yet not so small that the computer's error in calculation 
distorts the picture. My colleague John Mills at the Univer
sity of Warwick and I are developing computer graphics for 
this approach. Its value is that it exhibits part of the graph as 
being indistinguishable from a straight line, in particular the 
tangent to the curve at x is indistinguishable from the graph 
itself. This gives strong support to the notion that when &: is 
small, oy and dy are very close in value, with the difference 
between them being an error of higher magnitude. The 
method clearly shows that dy/dx can have a perfectly satis
factory interpretation as a ratio. 

0---) 

I 
f(x) = x3 over the 

interval [0·9.1·01] 

f(x) = x3 over the 

interval [-2,2] 

Figure I 

(v) The "epsilon-delta method" 

f(x) = x3 over the 

interval 

[0'999.1'001] 

To show that the quotient (f(x+h)-f(x»/h tends to the real 
number f' (x) as h tends to zero, the epsilon-delta method 
requires us to first specify how close the quotient is required 
to be to f' (x) (say within a positive quantity epsilon), then 
�e must be able to compute how close h must be to zero 
(within a positive quantity delta) so that (f(x+h)-f(x»/h is 
then within epsilon off'(x). For a given epsilon the mental 
gymnastics required to find delta, even for a simple function 
like f(x) = x3 are fairly prodigious, involving the manipula-
tions of general inequalities. , 

During the last century the epsilon-delta method has 
led to fruitful advances in analysis and a clarification of 
the meaning of certain concepts for the professional 
mathematician, but it is too complex and intractable for the 
beginning student in calculus. 

(vi) The "modern infinitesimal method" 
In essence the approach follows that of Leibniz, but with 
modern logic to support the precise nature of infinitesimal 
and the "neglecting" of infinitesimal quantities. An in
finitesimal quantity is now an element in an ordered field 
which is smaller in size than any positive rational number. 
The description of infinitesimals can be given in clear 
algebraic terms (given in detail in [ I ]  and [2]). 

The derivative of f(x) = x3 in these terms is found by 
taking a non-zero infinitesimal e and computing 

(f(x+e)- f(x»/e = 3x2+3xe+e2. 
The standard part of this expression (that is, the real number 
infinitesimally close to it) is 

f'(x) = st(3x2+3xe+e2) = 3x2. 
Sometimes e is denoted by ox, now considered as 

afl 

infinitesimal, and o y is the infinitesimal quantity 
f(x+&:)-f(x). Then we have 

f'(x) = st (oy/&:). 
The infinitesimal dx, dy are defined to be dx &:, dy 
f' (x)dx , so that 

dy/dx = st (oy/&: ) . 

In this way dy/dx is a quotient once more, but a quotient of 
infinitesinal quantities. 

These various methods of viewing the derivative by no 
means exhaust all the possibilities. Cauchy's original 
epsilon-delta method included the use of infinitesimals, the 
modern constructive analysis of Bishop restricts the system 
to numbers and functions which can be explicitly computed, 
and so on. However, they are sufficient for this present 
discussion, for they give a wide variety of interpretations of 
the process of differentiation of which the formal epsilon
delta method is but one among many. When we judge the 
validity of any of these approaches, wittingly or 
unwittingly, we usually do so in a context which assumes 
one or more of them to be the valid one. Most mathemati
cians nowadays happily accept the epsilon-delta method as 
the touchstone of validity. Some also accept the modern 
infinitesimal method but may be nervous about the use of 
the axiom of choice in constructing the hyperreals. 

There is a basic cognitive problem here involving the 
meaning that we assign to thc:..processes and concepts of the 
calculus. As can be seen, the various methods outlined can 
have radically different meanings. It is often differences of 
meaning which cause controversy in the calculus. 

For instance, Cantor's celebrated attack on infinitesimals 
was largely motivated by his interpretation of infinite num
bers as cardinals or ordinals. Since neither of these types of 
number can be divided, he asserted that infinitesimals, 
which should be produced as the reciprocals of infinite 
numbers, cannot exist. A further boost to the attack on 
infinitesimals resulted from the formalization of the real 
number concept in the second half of the nineteenth century. 
A positive infinitesimal cannot be a real number, smaller 
than all positive quantities, since half of it is still positive 
but smaller. This did not eliminate infinitesimals from 
mathematics. Far from it. They remained, but with a dis
tinct shift in meaning. An infinitesimal ceased to be re
garded as a very small quantity and came to be considered 
as a function which tends to zero. This interpretation had 
arisen in the work of Cauchy and it continued to pervade 
textbooks well into the twentieth century. 
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The resolution of controversies involving the meaning of 
mathematics is rightly one of the provinces of the mathema
tics educator in the widest sense. It concerns not only 
mathematics but also the cognitive processes involved in the 
historical development, in our current culture, and in the 
form of mathematical meaning which we pass on to the next 
generation. It cannot be left to chance. An educator must do 
more than just pass on the current mathematical culture, he 
must analyse it and modify it to make it appropriate for the 
learning and for its future use and development. 

If we apply this wide frame of reference to the calculus 
we find a possible source of error in the old intuitive method 
which leads to incorrect proofs when misapplied in 
epsilon-delta calculus. 

Cauchy defined an infinitesimal to be a "function which 
tends to zero"; In the dynamic limit method (ii), if we write 
u(h) = 3xh+h2, then we find that u(h) tends to zero as h 
tends to zero. In Cauchy's terminology, u(h) is an infinites
imal! Furthermore, if we write v(h) = h, then v(h) is also an 
infinitesimal. In essence the dynamic limit method reduces 
to the old infinitesimal method but with a vital difference in 
meaning. In the old infinitesimal method the infinitesimals 
are quan ti ties, but in the dynamic limit method they are 

func ti ons. As quantities they were usually considered to be 
variable and to grow arbitrarily small without actually 
reaching zero. 

It is here that a fundamental source of error can arise. In 
the Cauchy sense we define a function f to be an infin itesi-

mal iff(x) tends to O·as x tends to O. (Implicit in the defini
tion is thatf must be defined for all values of x near, but not 
necessarily equal, to zero.) An infinitesimal will be said to 
be proper if f(x) is non-zero for x near, but not equal, to 
zero, otherwise it will be called improper. 

Examples f(x) = x(x- l )(x-2) is a proper infinitesimal 
becausef(x) tends to zero as x tends to zero, butf(x) is not 
equal to zero for x near the origin. On the other hand u(x) = 

x sin(l /x) (x l' 0) is an improper infinitesimal because it 
tends to zero as x tends to zero, but it is zero at a sequence 
of points arbitrarily close to the origin. 

It is improper infinitesimals which are a source of error in 
the calculus. Specifically, in the proof of 

dv dv du �. 

dx du dx 
when writing 

8u = u(x+Ox)-u(x), 

and considering the limit of 
8v 8v 8u . 

- --

Ox 8u Ox 

8v = v(u+8u)-v(u) 
= v(u(x+Ox»-v(x) 

we must make sure that 00 is a proper infinitesimal. Other
wise 8u will be taking on the value zero infinitely often as 
Ox tends to 0 and we sh-all be dividing by zero. If 8u is a 
proper infinitesimal, then this proof is perfectly valid. 

The first edition of Hardy's "Pure Mathematics" had a 
celebrated error in which this was not taken into account. 

0--) 13 - ) ,... . -

0- ) 
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u(x) = x
2

sin(1/x) 

over the interval 

[-1,1] 

-1� ___ -�0�5� __ �0� __ ------�1 

v(x) = x sin(l/x) 

over the interval 

[-1,1] 

-1� _____ -�oS� ___ 0� __________ �1 

0-) 

Figure 2 

u(x) = x
2

sin(1/x) 

over the interval 

[-00001,00001] 

-1£-03 -SE-04 la 

v(x) = x sin(l/x) 

over the inter�a1 

[-00001,00001] 

lE-03 



Nowadays, when this proof is dealt with in epsilon-delta 
analysis it is often made to seem unintuitive and hard. The 
fact is, however, that if ay is a proper infinitesimal and 
dy/dx exists, then dy/dx = O. (To prove this, simply note 
that if dy/dx = k then this means that ay/Ox - k tends to 
zero as Ox tends to zero. Since ay is improper, it keeps on 
taking the value zero during this process whilst k is con
stant; the only way this can happen is if k = 0.) Now if ou is 
improper and ov = v(u +ou)- v(u), then ov is also improper. 
Thus the chain rule ( I) is true because both sides are zero. 

Of course, this only happens if the derivatives exist. If we 
consider 

u(x) = x2 sin( l /x), vex) = x sin( l /x) 
for non-zero x and define u(O) = v(O) = 0, then for x = 0 
the increments 

Ou = u(O+Ox)-u(O), ov = v(O+Ox)- v(O) 
are both improper infinitesimals, but du/dx exists at 0 and 
dv/dx does not. On a small interval centred on zero the 
computer printout of u continues to oscillate but the graph 
of v flattens out, as in figure 2. The irregularities in the 
picture of v are due to the fact that the program bei ng used at 
the time only computed a limited number of values and 
there just weren't enough computed to cope with the large 
number of oscillations. The computer printouts also suffer 
from being drawn in a small dot-matrix printer; the original 
television picture of u over [ -0.00 1, 0. 001] appears as a flat 
straight line over the middle portion. 

Cauchy defined an infinitesimal f to be of higher order 
than an infinitesimal g iff(x)/g(x) tended to zero as x tends 
to zero. (In this definition g(x) needs to be proper to avoid 
dividing by zero.) It is clear that if ay is improper, then 
dy/dx exists if and only if ay is a higher order infinitesimal 
than Ox. In the two examples, ou is higher order than Ox, but 
ov is not. 

In general, if ay is not of higher order than Ox, then ay/Ox 
must oscillate as ox tends to zero, for it keeps on taking the 
value zero yet does-IT6t tend to zero. 

All this bother about improper infinitesimals is totally 
unnecessary in the theory of Leibniz as he conceived it since 
his infinitesimals were all proper. For him an infinitesimal 
was a variable quantity which tended to zero without actu
ally getting there. The class of functions he had in his reper
toire all had this property. (If one were to have suggested u 
and v to him as functions, he would likely as not have 
responded that they are not defined at the origin and they are 
perfectly well-behaved elsewhere. At this early stage in the 
calculus, the term "continuous" meant "given by a single 
formula" and it would not be permissible to define u(O) = 
v(O) = 0, for that could be classified as using a different 
formula for the function in part of the domain.) Thus the 
fuss which is made about this possible source of error is 
irrelevant to Leibniz. 

It is also largely irrelevant to beginning calculus students. 
In [5], [6] it was shown that the experiences of dynamic 
limits in English schools were such that u(h) � ° was 
interpreted as implying u(h) got close to zero as h ap
proached zero but that it never actually reached' �here. In 
other words, the class of functions which beginning cal
culus students have in their repertoire leads to an implicit 
belief that all infinitesimals are proper. In this context the 
old intuitive calculus is perfectly correct, and when the 
context is broadened to include a wider class of functions, 

the modification required which I demonstrated above is 
quite obvious and quite trivial. 

Even when this wider class of functions is included there 
is no reason to forgo the old-style notations and meanings. 
All one needs to do is to make sure that one never divides by 
an improper infinitesimal, so that in computing the limit of 
ay/Ox as Ox tends to zero, the denominator Ox is never 
allowed to be zero. 

However, there is a flaw with only dealing with proper 
infinitesimals. It may be that u, v are proper infinitesimals, 
yet U +v is improper. For instance: 

u(x)=x + x sin ( l/x) (x oF 0), u(O)=O 
vex) = -x. 

Thus the arithmetic of proper infinitesimals is not a closed 
system. If one persists with the old-style calculus th@n one 
should check that this does not lead to difficulties. The best 
way out is to insist that independent variables must be 
proper but dependent variables need not be. In a formula 
like 

o(u+v)/Ox = ou/Ox + av/Ox, 
it does not matter if ou and ov are proper or improper 
because they are dependent variables. In elementary cal
culus we do not add dependent variables, so the flaw does 
not cause any problems. 

However, the theory starts creaking at the edges when we 
consider 

ov ov ou 

ou Ox 

for ou is a dependent increment in computing ou/Ox, but an 
independent increment in computing ov/Ou. The dynamic 
limit notion, which visualises ox moving "continuously" 
towards zero (in the cognitive sense that it passes through 
all intermediate values) enforces the improper infinitesimal 
ou to be zero infinitely often, causing a breakdown of the 
intuitive theory. It could be patched up by changing the 
conceptual imagery and allowing Ox to move to zero in fits 
and starts, jumping over the "bad points" where ou =;= O. 
But if the learner is using such sophisticated notions as 
improper infinitesimals, perhaps it is time .to call it quits and 
move to a more appropriately subtle form of the calculus. I 
believe it is for reasons like this that one may wish to 
criticise the Leibnizian 'notation and go on from the notion 
of dynamic limit to the epsilon-delta or modern infinitesi
mal methods. 

The reasons why infinitesimals are simpler and more in
tuitive than epsilon-deltas are two-fold. Firstly infinitesi
mals rely on the dynamic idea of limit which gives a good 
cognitive feel for the limiting process. Secondly, the 
epsilon-delta method is not content with noting just that a 
variable tends to zero, it actually computes how fast this 
happens by laying down epsilon and asking one to compute 
delta. When this computation is carried through it can be
come amazingly complex. 

Contrast this with the infinitesimal definition of con
tinuity: 

x,y infinitesimally close impliesf(x),J(y) are infinites
imally close. 

The fact thatf is not continuous requires simply: 

there exist x,y infinitesimally close withf(x),f(y) dif
fering by a non-infinitesimal quantity. 
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Remarkably, this definition works for the dynamic limit 
version as well. To show thatf is continuous at x one only 
need take any function u which is an infinitesimal and show 
thatf(x+u)-f(x) is infinitesimal. For instance, iff(x) = x3 
and u(t) = t2+5t4 ,  then u(t) is an infinitesimal, and so is 

f(x+u(t»-f(x) = (x+t2+ 5t4)L x3 
because the latter, considered as a function of t, tends to 
zero as t tends to zero. 

This illustrates why the infinitesimal method is so intui
tive: it is essentially the same as the dynamic limit method 
which has such strong cognitive appeal. Proofs using the 
infinitesimal method also draw on this existing cognitive 
structure and so appear to be intuitive. This is why calculus 
proofs are easy in the hyperreals. They are equally easy in 
the dynamic limit method - in fact they are so easy that 
they are not regarded as "proofs" at all. The mathematical 
community gets drawn inexorably into the epsilon-delta 
mode of operation for formal proofs, and .here the computa
tions become far more difficult. There are quantifiers to 
manipulate, implicitly or explicitly, the method has to work 
backwards from the closeness of f(x) and f(y) (the given 
epsilon) to establish the closeness of x and y (the required 
delta), and ad hac methods have to be called into play to do 
the computations. 

However, all is not that straightforward in the modem 
infinitesimal method. First there is the problem that the 
more sophisticated is the learner, the more likely he is to 
have ideas in his cognitive structure which do not extend to 
the hyperreals. Ideas of dynamic limits carry over weIl but 
more complex statements (which involve quantification of 
sets) can break down. Students who have met such state
ments as the completeness of the reals (every non-empty 
subset of the real numbers which is bounded above has a 
least upper bound) initiaIly lack the subtlety to distinguish 
between these statements, which do not extend to the hyper
reals, and those of first-order predicate calculus which do. 
Thus to them the hyperreals are less intuitive because it is 
not clear which ideas in their cognitive structure give cor
rect intuitions. 

The statements in the modern infinitesimal method are 
also more subtle than is sometimes indicated. For instance, 
the earlier infinitesimal description of continuity I gave re
quires thatf be extended to a larger hyperreal domain D* 
and that when x and y are taken infinitesimally close we 
require x in D but y in D*. The dynamic limit method gives 
an insight as to why this is so. There we havef is continuous 
at x inD if 

f(x + h) tends to f(x) as h tends to O. 
In this expression y = x +h is afunctian (of h), whilst x is 
an element of D. Thus y is a function which gets infinitesi
mally close to x, indicating that it is a very different kind of 
animal from x in D. This is why we require y to be in D*. 

In "Infinitesimal Calculus" [I] by Henle and Kleinberg, 
hyperreals are taken to be sequences of real numbers, and 
infinitesimals are those sequences which tend to zero. The 
extension D * of D simply consists of sequences (x n) where 
each x n is in D, and if y denotes the sequence (x n),' then for y 
inD* we havef(y) is the sequence (j(xn». It is clear that iff 
is continuous at x in the usual -sense, then x n � x implies 

f(x n) � f(x), so if the sequence (x n -x) tends to zero, so does 
the sequence If(xn)-f(x)), whence we see that 
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x inD, y inD* and y-x infinitesimal impliesf(y)-f(x) 
infinitesimal. The problem with this seemingly naive piece 
of interpretation is that the arithmetic of sequences is not 
easy to make into a field. We can define addition and mutip
lication in the obvious way by doing the sums term by term. 
The sequence I , I , I , . . .  acts naturally as a unit and if a sequence 
has all non-zero terms then we can define its multiplicative 
inverse by taking the reciprocal of each term. But if a 
sequence has any terms equal to zero we cannot do this. We 
are in an analogous situation to that of proper and improper 
infinitesimals! If a sequence tends to zero without actuaIly 
getting there, we can invert it, but if it has zero terms we 
can't. 

To eliminate this problem a subtle equivalence relation is 
put on sequences, so that hyperreals are actually equiy
alence classes of sequences with the system set up in such a 
way that it has an ordered field structure. It is the setting up 
of this subtle equivalence relation which makes the rigorous 
picture so hard. 

, In [2] Keisler gives another hyperreal field construction 
which produces a different field from that given by Henle 
and Kleinberg. This construction ties in neatly with our 
earlier ideas of infinitesimals as functions which tend to 
zero. Here one attempts to take the hyperreals to be func
tions defined on subsets of IR with values in IR. These are 
added and multiplied pointwise, so that iff is defined on D 
and g is defined on E, then the product p is given by 

p (x) = f(x)g(x) 
and this is only defined on the interaction of D and E. The 
unit element is clearly e:IR �IR where e(x) = I for all x, 
and now the problems start again. What is the inverse off? 
The function IIf given by 

(I Jf)(x) = IIf(x) 
is clearly a candidate, but it is only defined for those values 
of x in D withf(x) nonczero. The product off and IIf is also 
only defined for these very values of x and, in general, it 
cannot equal e which is defined for all real numbers. 

Once again the problem is solved by constructing a subtle 
equivalence relation on a certain coIlection of functions so 
that in this interpretation a hyperreal number is an equiv
alence class of functions. The subtleties are not obvious at 
all. Or to put it anotHer way, the theory has only been 
around for a few years and mathematicians have not yet had 
enough time to work the ideas to make the subtleties seem 
obvious. 

What is interesting about this particular construction is 
that infinitesimals are now equivalence classes offunctians 
which tend ta zero. The old duality of meaning raises its 
head again. An infinitesimal in the hyperreals may be re
garded as a point on an extended number line which is 
infinitesimal close to the origin. It has another interpretation 
in terms of a function which tends to zero. 

Returning to the calculus of Leibniz and restricting our
selves to analytic functions (wheref(x+h) is always expres
sible as a power series in h), we find a fundamental link 
with the earlier remark about infinitesimals. An analytic 
function which tends to zero is a power series which must 
start with a positive power of h, say with a term chk plus 
higher powers of h (where c is non-zero): 

f(h) = chk+dhk+1+ . .. 



By writing this as 

f(h) = hk (C + dh + . . .  ) 

and noting that the power series c + dh + . . . tends to c as h 
tends to zero, we find thatf(h) is not zero in a neighbour
hood of the origin apart from at the origin itself. Thus an 
analytic function which tends to zero is a proper infinitesi
mal. By allowing the first power k to be a negative integer, 
if necessary, such power series form a field. I now realise 
that this is at the root of the construction that I described in 
the article immediately preceding that of Peggy Marchi in 
For the Learning of Mathematics [5] . It is because every 
analytic infinitesimal is proper that we get a decent field 
structure and this is why the system I described is such a 
good match for Leibniz's calculus where every infinitesimal 
is also proper. 

It becomes almost invidious to add at this juncture that in 
[5] I pointed out that there is a correspondence between 
infinitesimals considered as points in this field structure and 
infinitesimals considered as functions which tend to zero. 
The way in which all the strands fit together seems truly 
amazing. 

To sum up then, this article brings forward the following 
major poil)ts: 

(i) Provided that improper infinitesimals are suitably 
handled, the old infinitesimal calculus is mathematically 
sound. 
(ii) In the calculus of Leibniz improper infinitesimals did 
not occur. 
(iii) In the intuitive approach to beginning calculus using 
the dynamic limit method, unless complicated examples 
such as x sin(i/x) are purposely introduced, the ideas of 
improper infinitesimals do not occur. . 

(iv) It is not necessary to introduce improper infinitesi
mals to beginners. 
(v) When they are introduced, they can be explained 
simply and the dynamic limit method remains 
satisfactory, provided that the independent variables are 
restricted to taking only proper infinitesimal values. 
(vi) The dynamic limit method provides a natural intro
duction to epsilon-delta techniques and also provides 
basic intuitions for the modern infinitesimal method. 
(vii) The processes and proofs in modern infinitesimal 
calculus are easy because they mirror cognitive processes 
and proofs as in the dynamic limit method. They are hard 
in the epsilon-delta approach because of the complicated 
computations and the many quantifiers required to for
malize the dynamic limit process in the real numbers 
without resorting to infinitesimals. 
(viii) The rigorous concepts of modern infinitesimal cal
culus are hard because of the difficulty of setting up the 
ordered field structure of the hyperreal numbers. They 
are made worse when the approach demands a perceptive 
use of logical language and first-order predicate calculus 
as a pre-requisite. 
(ix) Finally I should add that the infinitesimal 'method 
sometimes promises more than it can deliver because its 
construction is based on the axiom of choice and is 
therefore . . .  non-constructive. As an illustration: the 
theory promises an extension from a sequence 

So.S\,S2' . .  ,S", . . .  to give S H  ER* for infinite hypernatural 
numbers H E N*; now take S n to be the n tit decimal place 
in the expansion of TT" (s o = 3, s\ = 1, S2 = 4, S3 = 1, . . .  ) 
and ask the $64,000 question: what is s (H)? There are 
thus philosophical implications in the use of non-standard 
analysis which still require consideration. They may 
cause genuine problems for the learner. 

My own personal belief is that the best introduction to the 
calculus is through the dynamic limit method supplemented 
by examples from the numerical method and computer 
drawing of graphs. As well as giving valuable spatial intui
tion, the computer drawings show graphically (in both 
senses of the word) why it is that, when the derivative 
exists, for small values of !ix, the increments oy an<l.dy 
differ by an error of higher order. Hence the symbol dy/dx" 
can take its original meaning as a quotient of lengths. 

A later study of epsilon-delta techniques for mathematics 
majors, though it is difficult, is a valuable grounding in 
clear logical thinking. If a theorem is sloppily stated in 
epsilon-delta terms, it is usually wrong. 

The new infinitesimal method has distinct possibilities 
for a more intuitive understanding of the finer points. 
However, the setting up of the field structure on the hyper
reals is abstruse and mathematicians are put off at the mo
ment by the necessity of studying first-order predicate cal
culus before beginning the theory. Keisler [2] has shown the 
way by launching an axiomatic approach. Following this 
lead, a course has been given for two years at Warwick 
University based entirely on set-theoretic axioms without 
the need for any initial discussion of logic or any deep 
theory about different types of mathematical language. 
There is an allied geometrical interpretation which allows 
one to look through "optical microscopes", in which the 
graphs of differentiable functions when magnified look 
straight. The picture that one sees are like the computer 
drawings mentioned earlier. Thus the circle closes with the 
esoteric idea of infinitesimals giving the same pictures as 
the practical efforts of a computer using small numbers. 

I believe that it is the search for this fundamental unity of 
ideas between abstract theory and practical reality which 
will prove the most fruitful. And whatever the balance of 
future developments, a btend of the dynamic limit method 
with practical numerical computations and high magnifica
tion drawings is likely to provide the most suitable ground
ing for beginning calculus students, to prepare them for 
future refinements. 
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