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With the introduction of new infinitesimal methods in the last two decades. 
there are now available a number of different approaches to the calculus. In her 
perceptive review essay on “Infinitesimal Calculus” [3], Peggy Marchi raised a 
number of important points worthy of comment. The first concerned the validity 
of the “old infinitesimal calculus”. Her implication was that this is a flawed 
theory, a judgement which has been made by most mathematicians over the last 
three centuries. My major aim in this article is to show that this judgement is a 
matter of interpretation of the meaning of the ideas and the context in which 
they are used and that, given a suitable context, the methods are perfectly 
satisfactory. A possible source of error in the method which arises in university 
analysis does not arise in the more restricted context of school or college 
calculus, nor did it arise in the original theory of Leibniz. It can be eliminated in 
a simple way.  

My second aim is to go some way towards answering Peggy Marchi’s 
questions: 

“Why are infinitesimals simpler and more intuitive than epsilon-deltas?” (page 38), 

“Calculus proofs are easy in the hyperreals but hard in the reals… why is this the 
case?” (page 42), 

“Why is the intuitive picture of the hyperreals easy and the rigorous picture of the 
hyperreals difficult?” (page 41).  

My final aim is to show how all these considerations arise out of old-style 
school calculus in a natural way and to put the case that this form of calculus, 
suitably interpreted, is mathematically correct and forms the best basis for 
beginning calculus, especially when allied to modern numerical and pictorial 
devices available on the computer. 

Let us begin by considering some of the many approaches to the calculus 
and the different meanings attributed to the concepts. 

(i) The “old, intuitive infinitesimal method” 
To differentiate a function y= f(x) in the original Leibniz method, the variable x 
is incremented by an infinitesimal quantity dx and the dependent variable y is 
then incremented to y+dy = f(x+dx). The derivative  (using modern 
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notation) is then the quotient dy/dx and, in computing this derivative, any 
“higher order” infinitesimal quantities are neglected. For instance, if f(x) = x3, 
then 

  

The quantity 3xdx + dx2 is infinitesimal and is neglected, leaving the derivative 
dy/dx to be 3x2. 

(ii) The “dynamic limit method” 
Here the calculations are similar to (i). We let h be a variable real number and 
compute the ratio (f(x+h)–f(x))/h, then allowing h to get closer and closer to 
zero. In this process, if the ratio approaches a limiting value, we take this 
limiting value to be the derivative . Often the symbol dx is used instead of 
h and dy instead of f(x+dx)–f(x), so that we think of the ratio dy/dx getting closer 
and closer to the limit . By blending the notation of this method with that 
of Leibniz we arrive at the idea that dy/dx is the limit of the ratio dy/dx as dx 
approaches zero. Often the ratio dy/dx is now interpreted as a compound 
symbol. It is not to be thought of as the quotient of dy by dx and the symbols dy 
and dx have no meaning in themselves. Even so, the symbolism is used to 
advantage in remembering formulae like 

   

though the student may be told that it is only a convenient memory device. He 
may even be told that he can cancel the “du” mentally, but must not mark the 
cancellation on paper! 

Matters are further complicated by the school of thought that defines dx and 
dy by dx = dx and dy = dx. This school considers dy/dx to be a quotient 
once more, but arising out of the definition of dy in terms of  and dx rather 
than the computation of ) as a quotient of' given quantities.  

It is one of these variants of the dynamic limit method that is used in old-
style school calculus. In England the teaching of analysis at universities is 
complicated by the fact of the students coming from school backgrounds where 
a variety of subtle shades of interpretation of meanings are current. 

(iii) The “numerical method” 
The derivative  can be computed for a specific numerical value of x by 
tabulating values of h against (f(x+h)–f(x))/h. For instance, when f(x)=x3 and 
x=1, we have: 

dy
dx

= f (x + dx)− f (x)
dx

= (x + dx)
3 − x3

dx
= 3x2 + 3xdx + dx2
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h (f(x+h)–f(x))/h 
1 7 

0.1 3.31 
0.001 3.003001 
10–10 3.00000000030000000001. 
...... ...... 
–0.1 2.71 

–0.01 2.997001 
–10–10 2.99999999970000000001 

From this table we see that as h tends to zero from either side the values in the 
second column tend to 3. 

(iv) The “computer drawing method” 
 

 
Figure 1 

To find the derivative  for a specific numerical value of x, tell a computer 
to plot the graph of f over a small interval x–a, x+a and draw it to a highly 
magnified scale. Figure 1 gives computer printouts of  over the 
specified intervals centred on x = 1. To a suitable scale the computer drawing is 
(within its limits of accuracy) a straight line. The derivative  is the 
gradient of this straight line. The key is to get the size of interval small enough 
to give a straight line, yet not so small that the computer’s error in calculation 
distorts the picture. My colleague John Mills at the University of Warwick and I 
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are developing computer graphics for this approach. Its value is that it exhibits 
part of the graph as being indistinguishable from a straight line, in particular the 
tangent to the curve at x is indistinguishable from the graph itself. This gives 
strong support to the notion that when dx is small, dy and dy are very close in 
value. with the difference between them being an error of higher magnitude. 
The method clearly shows that dy/dx can have a perfectly satisfactory 
interpretation as a ratio. 
(v) The “epsilon-delta method” 
To show that the quotient (f(x+h)–f(x))/h tends to the real number  as h 
tends to zero, the epsilon-delta method requires us to first specify how close the 
quotient is required to be to  (say within a positive quantity epsilon), then 
we must be able to compute how close h must be to zero (within a positive 
quantity delta) so that ((f(x+h)–f(x))/h is then within epsilon of . For a 
given epsilon the mental gymnastics required to find delta. even for a simple 
function like  are fairly prodigious, involving the manipulations of 
general inequalities. During the last century the epsilon-delta method has led to 
fruitful advances in analysis and a clarification of the meaning of certain 
concepts for the professional mathematician, but it is too complex and 
intractable for the beginning student in calculus.  

(vi) The “modern infinitesimal method” 
In essence the approach follows that of Leibniz, but with modern logic to 
support the precise nature of infinitesimal and the neglecting of infinitesimal 
quantities. An infinitesimal quantity is now an element in an ordered field 
which is smaller in size than any positive rational number. The description of 
infinitesimals can be given in clear algebraic terms (given in detail in [1] and 
[2]). The derivative of  in these terms is found by taking a non-zero 
infinitesimal e and computing 

  
The standard part of this expression (that is, the real number infinitesimally 
close to it) is 
   
Sometimes e is denoted by dx, now considered as an infinitesimal, and dy is the 
infinitesimal quantity f(x+dx)–f(x). Then we have 
   = st(dy/dx). 
The infinitesimal dx, dy are defined to be 
 dx = dx, dy = f'(x)dx, 
so that 
 dy/dx = st(dy/dx). 
In this way dy/dx is a quotient once more, but a quotient of infinitesimal 
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quantities.  
These various methods of viewing the derivative by no means exhaust all the 
possibilities. Cauchy’s original epsilon-delta method included the use of 
infinitesimals, the modern constructive analysis of Bishop restricts the system to 
numbers and functions which can be explicitly computed, and so on. However, 
they are sufficient for this present discussion, for they give a wide variety of 
interpretations of the process of differentiation of which the formal epsilon-delta 
method is but one among many. When we judge the validity of any of these 
approaches, wittingly or unwittingly, we usually do so in a context which 
assumes one or more of them to be the valid one. Most mathematicians 
nowadays happily accept the epsilon-delta method as the touchstone of validity. 
Some also accept the modern infinitesimal method but may be nervous about 
the use of the axiom of choice in constructing the hyperreals. 

For instance, Cantor’s celebrated attack on infinitesimals was largely 
motivated by his interpretation of infinite numbers as cardinals or ordinals. 
Since neither of these types of number can be divided, he asserted that 
infinitesimals, which should be produced as the reciprocals of infinite numbers, 
cannot exist. A further boost to the attack on infinitesimals resulted from the 
formalization of the real number concept in the second half of the nineteenth 
century. A positive infinitesimal cannot be a real number, smaller than all 
positive quantities, since half of it is still positive but smaller. This did not 
eliminate infinitesimals from mathematics. Far from it. They remained, but with 
a distinct shift in meaning. An infinitesimal ceased to be regarded as a very 
small quantity and came to be considered as a function which tends to zero. 
This interpretation arose in the work of Cauchy and it continued to pervade 
textbooks well into the twentieth century.  

The resolution of controversies involving the meaning of mathematics is 
rightly one of the provinces of the mathematics educator in the widest sense. It 
concerns not only mathematics but also the cognitive processes involved in the 
historical development, in our current culture, and in the form of mathematical 
meaning which we pass on to the next generation. It cannot be left to chance. 
An educator must do more than just pass on the current mathematical culture, he 
must analyse it and modify it to make it appropriate for the learning and for its 
future use and development. 

If we apply this wide frame of reference to the calculus we find a possible 
source of error in the old intuitive method which leads to incorrect proofs when 
misapplied in epsilon-delta calculus. 

Cauchy defined an infinitesimal to be a “function which tends to zero”. In 
the dynamic limit method (ii), if we write 

, 
then we find that u(h) tends to zero as h tends to zero. In Cauchy’s terminology 
u(h) is an infinitesimal! Furthermore, if we write v(h) = h, then v(h) is also an 
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infinitesimal. In essence the dynamic limit method reduces to the old 
infinitesimal method but with a vital difference in meaning. In the old 
infinitesimal method the infinitesimals are quantities but in the dynamic limit 
method they are functions. As quantities they were usually considered to be 
variable and to grow arbitrarily small without actually reaching zero. 

It is here that a fundamental source of error can arise. In the Cauchy sense 
we define a function f to be an infinitesimal if f(x) tends to 0 as x tends to 0. 
(Implicit in the definition is that f must be defined for all values of x near, but 
not necessarily equal to, zero. An infinitesimal will be said to be proper if f(x) is 
non-zero for x near, but not equal to, zero, otherwise it will be called improper. 

Example f(x) = x(x–1)(x–2) is a proper infinitesimal because f(x) tends to zero 
as x tends to zero, but f(x) is not equal to zero for x near the origin. On the 
other hand f(x) = xsin(l/x) (x≠0) is an improper infinitesimal because it tends to 
zero as x tends to zero, but it is zero at a sequence of points arbitrarily close to 
the origin.  

It is improper infinitesimals which are a source of error in the calculus. 
Specifically, in the proof of 

 .......................................................................................... (1) 

when writing 
 du = u(x+dx)–u(x), dy = v(u+du)–v(u) 
and considering the limit of 

  

we must make sure that du is a proper infinitesimal. Otherwise du will be taking 
on the value zero infinitely often as dx tends to 0 and we shall be dividing by 
zero. If du is a proper infinitesimal, then this proof is perfectly valid. The first 
edition of Hardy’s “Pure Mathematics” had a celebrated error in which this was 
not taken into account.  

Nowadays, when this proof is dealt with in epsilon-delta analysis it is often 
made to seem unintuitive and hard. The fact is, however, that if dy is a proper 
infinitesimal and dy/dx exists, then dy/dx = 0. (To prove this, simply note that if 
dy/dx=k then this means that dy/dx–k tends to zero as dx tends to zero. Since dy 
is improper, it keeps on taking the value zero during this process whilst k is 
constant: the only way this can happen is if k = 0.) Now if du is improper and dv 
= v(u+du)–v(u), then dv is also improper. Thus the chain rule (1) is true because 
both sides are zero. 

Of course, this only happens if the derivatives exist. If we consider 
u(x) = x2 sin(1/x), v(x) = x sin( l/x) for non-zero x 

and define 

dv
dx

= dv
du
du
dx

δv
δ x

= δv
δu

δu
δ x
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u(0) = v(0) = 0, 
then for x = 0 the increments 

du = u(0+dx) – u(0), dv = v(0+dx) – v(0) 
are both improper infinitesimals, but du/dx exists at 0 and dv/dx does not. On a 
small interval centred on zero the computer printout of the graph of v flattens 
out but v continues to oscillate as in figure 2. 
The irregularities in the picture of v are due to the fact that the program being 
used at the time only computed a limited number of values and there just 
weren’t enough computed to cope with the large number of oscillations. The 
computer printouts also suffer from being drawn in a small dot-matrix printer: 
the original television picture of u over [–0.001,0.001] appears as a flat straight 
line over the middle portion. 

Cauchy defined an infinitesimal f to be of higher order than an infinitesimal 
g if f(x)/g(x) tended to zero as x tends to zero. (In this definition g(x) needs to be 
proper to avoid dividing by zero.) It is clear that if dy is improper then dy/dx 
exists it and only if dy is a higher order infinitesimal than dx. In the two 
examples, du is higher order than dx but dv is not. 

 

Figure 2 
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In general, if dy is not of higher order than dx, then dy/dx must oscillate as dx 
tends to zero, for it keeps on taking the value zero yet does not tend to zero. 

All this bother about improper infinitesimals is totally unnecessary in the 
theory of Leibniz as he conceived it since his infinitesimals were all proper. For 
him an infinitesimal was a variable quantity which tended to zero without 
actually getting there. The class of functions he had in his repertoire all had this 
property. (If one were to have suggested u and v to him as functions, he would 
likely as not have responded that they are not defined at the origin and they are 
perfectly well-behaved elsewhere. At this early stage in the calculus, the term 
continuous meant given by a single formula and it would not be permissible to 
define u(0) = v(0) = 0 for that could be classified as using a different formula 
for the function in part of the domain.) Thus the fuss which is made about this 
possible source of error is irrelevant to Leibniz. 

It is also largely irrelevant to beginning calculus students. In [5], [6] it was 
shown that the experiences of dynamic limits in English schools were such that 
u(h)®0 was interpreted as implying u(h) got close to zero as h approached zero, 
but that it never actually reached there. In other words the class of functions 
which beginning calculus students have in their repertoire leads to an implicit 
belief that all infinitesimals are proper. In this context the old intuitive calculus 
is perfectly correct and when the context is broadened to include a wider class 
of functions, the modification required which I demonstrated above is quite 
obvious and quite trivial. 

Even when this wider class of functions is included there is no reason to 
forgo the old-style notations and meanings. All one needs to do is to make sure 
that one never divides by an improper infinitesimal, so that in computing the 
limit of dy/dx as dx tends to zero, the denominator dx is never allowed to be 
zero. 

However there is a flaw with only dealing with proper infinitesimals. It may 
be that u, v are proper infinitesimals, yet u+v is improper. For instance: 

 ( x ≠ 0), u(0) = 0 
v(x) = –x. 

Thus the arithmetic of proper infinitesimals is not a closed system. If one 
persists with the old-style calculus then one should check that this does not lead 
to difficulties. The best way out is to insist that independent variables must he 
proper but dependent variables need not be. In a formula like 

 d(u+v)/dx = du/dx+dv/dx 
it does not matter if du and dv are proper or improper because they are 
dependent variables, so the flaw does not cause any problems. However, the 
theory starts creaking at the edges when we consider  

  

u(x) = x + 1
2 xsin(1/ x)

δv
δ x
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for du is a dependent increment in computing du/dx but an independent 
increment in computing dv/dx. The dynamic limit notion, which visualises dx 
moving continuously towards zero (in the cognitive sense that it passes through 
all intermediate values) enforces the improper infinitesimal to be zero infinitely 
often. causing a breakdown of the intuitive theory. It could be patched up by 
changing the conceptual imagery and allowing du to move to zero in fits and 
starts, jumping over the bad points where du=0. But if the learner is using such 
sophisticated notions as improper infinitesimals, perhaps it is time to call it quits 
and move to a more appropriately subtle form of the calculus. I believe it is for 
reasons like this that one may wish to criticise the Leibnizian notation and go on 
from the notion of dynamic limit to the epsilon-delta or modern infinitesimal 
methods. 

The reasons why infinitesimals are simpler and more intuitive than epsilon-
deltas are two-fold. Firstly infinitesimals rely on the dynamic idea of limit 
which gives a good cognitive feel for the limiting process. Secondly the epsilon-
delta method is not content with noting just that a variable tends to zero, it 
actually computes how fast this happens by laying down epsilon and asking one 
to compute delta. When this computation is carried through it can become 
amazingly complex. 

Contrast this with the infinitesimal definition of continuity:  
x,y infinitesimally close implies f(x), f(y) are infinitesimally close.  

The fact that f is not continuous requires simply: 
there exist x, y infinitesimally close with f(x), f(y) differing by a non-
infinitesimal quantity.  

Remarkably, this definition works for the dynamic limit version as well. To 
show that f is continuous at x one only need take any function u which is an 
infinitesimal and show that f(x+u)–f(x) is infinitesimal. For instance, if f(x) = x3 
and u(t) =t2+5t4, then u(t) is an infinitesimal (as a function of t) and so is 

f(x+u(t)) – f (x) = (x+t2+5t4)3 – x3, 
because the latter, considered as a function of t, tends to zero as t tends to zero. 

This illustrates why the infinitesimal method is so intuitive: it is essentially 
the same as the dynamic limit method which has such strong cognitive appeal. 
Proofs using the infinitesimal method also draw on this existing cognitive 
structure and so appear to be intuitive. This is why calculus proofs are easy in 
the hyperreals. They are equally easy in the dynamic limit method—in fact they 
are so easy that they are not regarded as “proofs” at all. The mathematical 
community gets drawn inexorably into the epsilon-delta mode of operation for 
formal proofs, and here the computations become far more difficult. There are 
quantifiers to manipulate, implicitly or explicitly, the method has to work 
backwards from the closeness of f(x) and f(y) (the given epsilon) to establish the 
closeness of x and y (the required delta) and ad hoc methods have to be called 
into play to do the computations. However, all is not that straightforward in the 
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modern infinitesimal method. First there is the problem that the more 
sophisticated is the learner, the more likely he is to have ideas in his cognitive 
structure which do not extend to the hyperreals. Ideas of dynamic limits carry 
over well but more complex statements (which involve quantification of sets) 
can break down. Students who have met such statements as the completeness of 
the reals (every non-empty subset of the real numbers which is bounded above 
has a least upper bound) initially lack the subtlety to distinguish between such 
statements which do not extend to the hyperreals and those of first-order 
predicate calculus which do. Thus, to them, the hyperreals are less intuitive 
because it is not clear which ideas in their cognitive structure give correct 
intuitions The statements in the modern infinitesimal method are also more 
subtle than is sometimes indicated. For instance, the earlier infinitesimal 
description of continuity I gave requires that D be extended to a larger hyperreal 
domain D* and that when x and y are taken infinitesimally close we require x in 
D but y in D*. The dynamic limit method gives an insight as to why this is so 
There we have 

f is continuous at x in D if f(x+h) tends to f(x) as h tends to 0. 
In this expression y =x+h is a function (of h) whilst x is an element of D. Thus y 
is a function which gets infinitesimally close to x indicating that it is a very 
different kind of animal from x in D. This is why we require y to be in D*. 

In “Infinitesimal Calculus” [1] by Henle and Kleinberg, hyperreals are taken 
to be sequences of real numbers and infinitesimals are those sequences which 
tend to zero The extension D* of D simply consists of sequences (xn) where 
each xn is in D and if y denotes the sequence (xn) then, for xn in D*, we have 
f(y) is the sequence (f(xn)). It is clear that if f is continuous at x in the usual 
sense, then xn®x implies f(xn)®f(x), so if the sequence (xn-x) tends to zero, so 
does the sequence (f(xn)—f(x)), whence we see that  

x in D, y in D* and y–x infinitesimal implies f(y)–f(x) infinitesimal. 
The problem with this seemingly naive piece of interpretation is that the 
arithmetic of' sequences is not easy to make into a field. We can define addition 
and multiplication in the obvious way by doing the sums term by term. The 
sequence 1, 1, 1, … acts naturally as a unit and if a sequence has all non-zero 
terms then we can define its multiplicative inverse by taking the reciprocal of 
each term. But if a sequence has any terms equal to zero we cannot do this. We 
are in an analogous situation to that of proper and improper infinitesimals! If a 
sequence tends to zero without actually getting there, we can invert it, but if it 
has zero terms we can’t. 

To eliminate this problem a subtle equivalence relation is put on sequences 
so that hyperreals are actually equivalence classes of sequences with the system 
set up in such a way that it has an ordered field structure. It is the setting up of' 
this subtle equivalence relation which makes the rigorous picture so hard. In [2] 
Keisler gives another hyperreal field construction which produces a different 
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field from that given by Henle and Kleinberg. This construction ties in neatly 
with our earlier ideas of infinitesimals as functions which tend to zero. Here one 
attempts to take the hyperreals to be functions defined on subsets of R with 
values in R. These are added and multiplied pointwise, so that if f is defined on 
D and g is defined on E, then the product is given by 

p(x) = f(x)g(x) 
and this is only defined on the intersection of D and E. The unit element is 
clearly e:R®R where e(x) = 1 for all x and now the problems start again. What 
is the inverse of f? The function l/f given by 

(1/f)(x) = 1/f(x) 
is clearly a candidate, but it is only defined for those values of x in D with f(x) 
non-zero. The product of f and l/f is also only defined for these very values of x 
and, in general, it cannot equal e which is defined for all real numbers. Once 
again the problem is solved by constructing a subtle equivalence relation on a 
certain collection of functions so that in this interpretation a hyperreal number is 
an equivalence class of functions The subtleties are not obvious at all. Or, to put 
it another way, the theory has only been around for a few years and 
mathematicians have not yet had enough time to work the ideas to make the 
subtleties seem obvious. 

What is interesting about this particular construction is that infinitesimals are 
now equivalence classes of functions which tend to zero. The old duality of 
meaning raises its head again. An infinitesimal in the hyperreals may be 
regarded as a point on an extended number line which is infinitesimally close to 
the origin. It has another interpretation in terms of a function which tends to 
zero. Returning to the calculus of Leibniz and restricting ourselves to analytic 
functions (where f(x+h) is always expressible as a power series in h). we find a 
fundamental link with the earlier remark about infinitesimals. An analytic 
function which tends to zero is a power series which must start with a positive 
power of h say with a term chk (where c is non-zero) plus higher powers of h:  

f(x+h) = chk + dhk+1 + … . 
By writing this as 

f(x+h) = hk(c + dh + …) . 
and noting that the power series c + dh + … tends to c as h tends to zero, we 
find that it is not zero in a neighbourhood of the origin apart from at the origin 
itself. Thus an analytic function which tends to zero is a proper infinitesimal. 
By allowing the first power k to be a negative integer, if necessary, such power 
series form a field. I now realise that this is at the root of the construction that I 
described in the article immediately preceding that of Peggy Marchi in For the 
Learning of Mathematics [5]. It is because every analytic infinitesimal is proper 
that we get a decent field structure and this is why the system I described is such 
a good match for Leibniz’s calculus where every infinitesimal is also proper. 
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It becomes almost invidious to add at this juncture that in [5] I pointed out 
that there is a correspondence between infinitesimals considered as points in 
this field structure and infinitesimals considered as functions which tend to zero. 
The way in which all the strands fit together seems truly amazing.  

To sum up then. this article brings forward the following major points:  
 (i) Provided that improper infinitesimals are suitably handled, the 

old infinitesimal calculus is mathematically sound. 
 (ii) In the calculus of Leibniz improper infinitesimals did not occur. 
 (iii) In the intuitive approach to beginning calculus using the dynamic 

limit method, unless complicated examples such as xsin(1/x) are 
purposely introduced, the ideas of improper infinitesimals do not 
occur. 

 (iv) It is not necessary to introduce improper infinitesimals to 
beginners. 

 (v) When they are introduced, they can be explained simply and the 
dynamic limit method remains satisfactory, provided that the 
independent variables are restricted to taking only proper 
infinitesimal values. 

 (vi) The dynamic limit method provides a natural introduction to 
epsilon-delta techniques and also provides basic intuitions for the 
modern infinitesimal method. 

 (vii) The processes and proofs in modern infinitesimal calculus are 
easy because they mirror cognitive processes and proofs as in the 
dynamic limit method. They are hard in the epsilon-delta 
approach because of the complicated computations and the many 
quantifiers required to formalize the dynamic limit process in the 
real numbers without resorting to infinitesimals. 

 (viii) The rigorous concepts of modern infinitesimal calculus are hard 
because of the difficulty of setting up the ordered field structure 
of the hyperreal numbers. They are made worse when the 
approach demands a perceptive use of logical language and first-
order predicate calculus as a pre-requisite. 

 (ix) Finally I should add that the infinitesimal method sometimes 
promises more than it can deliver because its construction is 
based on the axiom of choice and is therefore … non-
constructive. As an illustration, the theory promises an extension 
from a sequence s1, s2, … sn … to give sH Î R* for infinite 
hypernatural numbers H Î R*. Now take .sn to be the nth decimal 
place in the expansion of π (s1 = 3, s2 = 1, s3 = 4, s2 = 1…) and 
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ask the $64,000 question: what is SH? There are thus 
philosophical implications in the use of non-standard analysis 
which still require consideration. They may cause genuine 
problems for the learner. 

My own personal belief is that the best introduction to the calculus is through 
the dynamic limit method supplemented by examples from the numerical 
method and computer drawing of graphs. As well as giving valuable spatial 
intuition the computer drawings show graphically (in both senses of the word) 
why it is that, when the derivative exists, for small values of dx, the increments 
dy and dy differ by an error of higher order. Hence the symbol dy/dx can take its 
original meaning as a quotient of lengths. 

A later study of epsilon-delta techniques for mathematics majors, though it is 
difficult, is a valuable grounding in clear logical thinking. If a theorem is 
sloppily stated in epsilon-delta terms, it is usually wrong. 

The new infinitesimal method has distinct possibilities for a more intuitive 
understanding of the finer points. However. the setting up of the field structure 
on the hyperreals is abstruse and mathematicians are put off at the moment by 
the necessity of studying first-order predicate calculus before beginning the 
theory. Keisler [2] has shown the way by launching an axiomatic approach. 
Following this lead, a course has been given for two years at Warwick 
University based entirely on set-theoretic axioms without the need for any 
initial discussion of logic or any deep theory about different types of 
mathematical language. There is an allied geometrical interpretation which 
allows one to look through “optical microscopes” in which the graphs of 
differentiable functions when magnified look straight. The picture that one sees 
are like the computer drawings mentioned earlier. Thus the circle closes with 
the esoteric idea of infinitesimals giving the same pictures as the practical 
efforts of a computer using small numbers. I believe that it is the search for this 
fundamental unity of ideas between abstract theory and practical reality which 
will prove the most fruitful. And whatever the balance of future development, a 
blend of the dynamic limit method with practical numerical computations and 
high magnification drawings is likely to provide the more suitable grounding for 
beginning calculus students to prepare them for future refinements.  
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