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What are the activities that constitute mathematical research? Various
well-known mathematicians such as Poincaré, Hadamard and Polya have
given descriptions, but these tend to be general reflections on the
process considered after the event. The aim of this paper is to describe,
within practical limits, the thought processes in a specific piece of
research as they happened. It highlights the research activities of the
author over ten days, relating these to the previous development of ideas
over a period of years and the developments which followed. There
were flashes of insight, the coming together of previous experiences,
analogies both useful and false, and intuitions having the ring of truth
which proved to be embarrassingly inaccurate.

After grappling with ideas which seemed complex at the time, the
final product was a theory so inevitable that it seemed like a
mathematical truth discovered. A year later it seemed naive, even trivial
and, when presented to students, they found it straightforward, simple
and obvious. But the tortuous route by which the author came to build
up the theory is a story worth telling, if only because the way that it
actually happened (as witnessed by notes taken at the time) was far less
glamorous and logical than the memories that were subsequently
recalled. In some instances memories a year later were quite different
from the evidence as concretely represented by the notes. It seems that
we remember the salient features of a past event and reconstruct the
detail when required. In this way our recollections are far more rational
than the actual processes. Even in the telling of the story it has been
necessary to select material and so a certain amount of rationalisation
has inevitably crept in. In doing this I have attempted to give an overall
impression of the research activity and, within this programme, select
certain themes that intertwine together as the work progresses. I have
written of myself in the third person, as a separate observer might have
done. This allows me to talk of the incorrect turns I took without (too
much) embarrassment. The story has been written in such a way that
events are usually reported without revealing subsequent occurrences
that were unknown at the time. In this way the reader may participate in
the hopes and fears as they happened without knowing of later reversals
of fate. When this rule is broken it is signified by the relevant passage
being placed in square brackets.
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The spur

If AB is a line segment half the length of CD, are there the same
number of points in AB as CD, or more, or less? (Figure 1.)

A B C D

Figure 1

If WXYZ is a square whose side-length is the same as AB, does W X Y Z
(and its interior) have as many points as AB, or more, or less? (Figure
2.)

A B W X

YZ

Figure 2

These questions were typical of a number in a questionnaire [1] to
investigate a child’s concept of infinity posed by Professor Fischbein of
Tel-Aviv University. A natural intuitive response by a child might be
that there are twice as many points in CD as AB and many more points
in the square than on the line. These answers are not in accord with the
accepted theory of cardinal numbers. They prompted the author to
embark on a discussion with Professor Fischbein which led to a formal
theory vindicating these intuitive responses, [12], [ 14].

An earlier ambition recalled

A project of the author which had lain fallow for several years provided
the second ingredient for the ensuing research work—his interest in
infinitesimals. He was aware of Abraham Robinson’s pioneering work
on non-standard analysis [7] and had briefly studied a text on
infinitesimal calculus by Keisler [5]. But he failed to understand either
book completely and this gave rise to an ambition to develop a simpler
theory of calculus using infinitesimal techniques. (The research here
described gave rise to such a theory, subsequently published, [12], [13].)

In brief, Robinson’s theory allows one to consider an extended
number line which includes infinitesimal quantities which are smaller in
size than any positive real number. The reciprocals of such quantities
are infinite in the sense that they are larger in size than any real
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number. Robinson’s extended number system, the hyperreal numbers,
has three kinds of element:

(i) the set I of infinitesimals,

(ii) the set F of finite numbers, of the form x+ε where r is a
real number and ε is an infinitesimal,

(iii) the set L of infinite elements.

If one includes zero as an infinitesimal then algebraically I  is an ideal in
the ring F.

For the purpose of reading this paper, all the reader needs to know is
that for any finite hyperreal number _=x+δ, the real number x is called
the standard part of a and is denoted by st a. In intuitive terms taking the
standard part is essentially the process of ignoring the infinitesimal part
of a finite hyperreal. In algebraic terms, however, it has a very precise
meaning. It may be shown that the map st:F→R is a ring
homomorphism with kernel I.

In Robinson’s calculus one may therefore define the derivative f'(x)
by computing ( f (x + ε ) − f (x)) / ε  (for a non-zero infinitesimal ε) and
then taking the standard part. For instance, if f(x) = x2, then

f (x + ε ) − f (x)
ε

= (x + ε )2 − x2

ε
= 2x + ε ,

so ′f (x) = st(2x + ε ) = 2x .

The historical process of computing with infinitesimal quantities and
then ignoring them now has a strictly logical formulation. But what is
an infinitesimal?

An example of a system with infinitesimals

At the time of beginning this work in 1978, Dr Tall was only aware of
one example of a simple system including infinitesimals (Robinson’s
system involves a logical construction). In a simple system, now to be
described, infinitesimals are represented not as points on a line, but as
rational functions. An understanding of this is crucial in what follows,
so we spend a little time considering it.

Let R(t) be the field of rational functions f(t)/g(t) where f(t) and g(t)
are polynomials in an indeterminate t. One defines a non-zero rational
function α(t)=f(t)/g(t) to be “positive” or “negative” as follows. The
non-zero polynomials f(t), g(t) have only a finite number of zeros, so
for real x exceeding these zeros, the sign of α (x) is strictly positive or
negative and this is defined to be the sign of α(t). For instance,

(t2–3t)/(t+1)
is “positive” according to this definition because

(x2–3x)/(x+ 1) = x(x–3)/(x+1) >0 for real x >3.
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Next we order rational functions by defining
α(t) > β(t) if and only if α(t) – β(t) is “positive”.

For instance t > 27 because the rational function t–27 is positive. In fact
t>a for any real number a, which leads to the reason why this example is
so crucial. In R(t) the element t is greater than any real number a. In
general we say α(t) is positive infinite if α(t) > a for all real numbers a.
The element t is “infinite” in this sense.

Geometrically one may visualise the comparison between rational
functions by drawing their graphs. A rational function is “positive” if its
graph is above the axis for large values of t and the relation α(t) > β(t)
holds when the graph of α(t) is above that of β(t) for large values of t.
In Figure 3 we see that t is positive and t > a for every real a, so t is
positive infinite.

y
y=t

y=a

t

from here on, the graph 
of y=t is above y=a 

Figure 3

In Figure 4 we see that 0 < 1/t < a for all positive real a, simply because
the graph of y=1/t is between y=0 and y=a for large positive values of t
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Figure 4

Thus 1/t is a positive infinitesimal in the sense that it is smaller than any
positive real a and larger than 0.

Dr. Tall’s ambition was to use this field R(t) as the basis for the
theory of calculus with infinitesimals. His problem was that these
infinitesimals were functions, not points. In addition, he needed to be
able to compute f'(a +ε) for real a and infinitesimal ε to be able to
compute f'(x). He could see how to do this when f was a rational
function because when a∈ R and ε∈ R(t), then f(a+ε) may be considered
as a rational function of a rational function and the composition of two
functions gives J(a+ε) ∈ R(t). He could not see how to extend the ideas
to more general functions. He gave up.

The events leading to the first insight

In the summer of 1978 Dr Tall attended a conference on the psychology
of learning mathematics in which Professor Fischbein described his
experiments on children’s intuition of infinity, mentioned above. He
noted that Professor Fischbein’s interpretation of infinity was essentially
a cardinal infinity and he resolved to explain the alternative notions of
infinity to broaden his perspective.

On November 6th 1978 Dr Tall flew to Israel to spend a month with
Dr Vinner at the Hebrew University of Jerusalem, with visits planned to
Tel-Aviv (to talk to Professor Fischbein) and Haifa.

In the first week he drafted a paper on “calculations and canonical
elements” [10] which he had begun earlier with lan Stewart in Britain.
This describes the schism that has arisen between the modem theory of
equivalence relations and the classical art of computation with
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representative (or “canonical”) elements from equivalence classes. This
proved to be relevant because of an earlier remark of Dr Stewart who
had said “the trouble with non-standard analysis is that there aren’t any
canonical elements”. In the field R(t) Dr Tall considered that there was
a “natural” choice of canonical infinitesimal, the rational function 1/t.

He also studied a paper [2] on mathematics education and history
which mentioned infinitesimals, so they were at the forefront of his
mind.

On the afternoon of Tuesday 7th November he brought up the topic
of infinitesimals with Dr Vinner and his wife Hava (also a
mathematician) and rehearsed the infinitesimal interpretation of l/t. The
following week on Thursday 16th November he travelled to Tel-Aviv to
talk to Professor Fischbein.

The confrontation

At lunch time on Thursday 16th November, Dr Tall discussed the
research of Professor Fischbein and Dina Tirosh [1] on children’s
intuition of infinity. He tried to explain that, just because the children’s
intuition did not coincide with that of cardinal number, it did not mean
that they were formally wrong. The cardinal explanation is that there
are the same number of elements in AB as CD because the
correspondence between the point P on AB, distance x from A, and Q
on CD, distance 2x from C, is a one-one correspondence between the
line-segments AB and CD.

A B

C D

P

Q2x

x

Figure 5

There is also a known 1-1 correspondence between AB and the square
WXYZ of Figure 2, so, in the cardinal number sense, there are as many
points on the line segments as in the square. Many children in the
experiments considered there were twice as many points in CD as AB
and many more points in the square.

Dr Tall suggested that if AB has length l and a “point” had
infinitesimal size ε, there would be l/ε points in AB and (2l)/ε in CD,
twice as many. Similarly there were (l/ε)2 points in the square, far more
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than in AB. In fact, for infinitesimal the ratio l/ε is infinite, so there are

infinitely many more points in the square than in the line segment.
Professor Fischbein was horrified at such an explanation and insisted

on having a clear definition of the notions of infinitesimal and infinite
elements. In fact, he wanted more, he wanted to be shown an
infinitesimal explicitly.

Dr Tall slipped into his glib explanation that the graph of 1/t could
be considered as an infinitesimal. There was an impasse. Professor
Fischbein, as a psychologist, was not prepared to accept such an idea. A
formal definition of an infinitesimal cut no ice with him. Dr Tall drew a
picture something like Figure 4. He used this diagram in an attempt to
demonstrate that for a > 0 the graph of y=1/t is ultimately below y=a
for large enough values. Professor Fischbein was still not satisfied, he
wished to see an infinitesimal as a small quantity, not as a graph. Dr Tall
countered this by pointing out that any vertical line x=k met y=1/t above
y=0 and below y=a for sufficiently large k. (Figure 6.)

y

y=1/t

y=a

y=0

t=k

Figure 6

Of course, for smaller values of a, larger values of k are required. Dr
Tall suggested that Professor Fischbein imagine a very large value of k;
in fact to be able to handle all positive a, the best way would be to
imagine a vertical line at infinity. Horizontal lines y=a meet this line at a
height a, and the graph y=1/t meets the “line at infinity” at an
infinitesimal height above the x-axis. (Figure 7.)
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Figure 7

This did not satisfy Professor Fischbein either, but the idea had a
profound effect on Dr Tall, who had never considered it before!
Professor Fischbein’s probing had forced him into describing figure 7
and the new insight intrigued him, forcing him to consider it in detail.

A fanciful idea and many “theorems”

Returning to Jerusalem at around 5:00 in the evening with darkness
falling and a young soldier’s gun near his left ear, he had a sudden
inspiration. He let ε=1/t and thought of 1/ε as an infinite point on the t-
axis. He then realized that if he took his vertical line at infinity through
the point 1/ε, then this would meet the graph of f(t) at a point which was
at a height f(1/ε) above the axis. In this way he found he had a direct
correspondence between rational functions f(t) and points on the vertical
line through 1/ε where the graph meets the line. (Figure 8.)
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y line “at infinity”  
t=1/ε

f(1/ε)

point f(1/ε)

t

function y= f(t)

Figure 8

He arrived at the fanciful idea that an infinitesimal was a point on a
certain line at infinity! This fascinated and excited him, spurring him to
feverish activity. He still could only explain where rational functions
met this line. Could he “complete” it so that all other functions would
meet it in a sensible way? In particular, could he define f(ε) for the
particular infinitesimal ε=1/t and any function f? He began with the
function f(x) = sinx and feverishly scribbled on an old brown envelope.
He considered

sinε = ε –ε3/3! + …
= lim

n→∞
sn

where

sn = ε − ε 3

3!
+…+(−1)n−1 ε 2n−1

(2n −1)!

Substituting ε=1/t he saw that sinε was a “limit” of elements in R(t).
Now his troubles began. He could only fitfully remember how to

handle these kinds of limits (which he had studied fifteen years before as
a postgraduate). He thought he should let In be the set of all multiples of
εn and then the notion of convergence sn→s should be:

“given N, there exists M such that n>M implies sn–s ∈  IN.”

Similarly a “cauchy sequence” should be

“given N, there exists M such that m,n >M implies sm–sn ∈  IN.”



– 10 –

(These concepts were later re-christened “super-convergence” and
“super-cauchy sequence” because the terms became infinitesimally close
to the limit or to each other.)

Meanwhile worries niggled at the back of his brain because of his
inability to remember the theory accurately. (One worry, for instance,
was because In was not an ideal in R(t), the latter being a field, and
having no proper ideals. This worried him for days, until he realized he
was confusing the roles of R(t) and the subring F of finite elements in
R(t). The subset IN was an ideal in F!)

Back in his room at the Hebrew University where he was now based,
he tried to consolidate his thoughts in writing.

Using the definitions he had just established, he let C be the set of
(super-)cauchy sequences and N the subset of sequences which (super-)
converged to zero. Following the standard completion process he
defined his desired extension ring to be C/N.

At this stage he was elated at what he had done but nervous of the
faulty details. However, rather than check the details, he returned to
secure ground and writing up earlier results. He felt that his thoughts
were unstable and he might lose the thread if he tried to sort out the
difficulties. Far better to write down the basic material that he knew
well to increase his security before attacking the frontier!

He outlined the story so far up to the definition of C/N (without
checking the details). [His notation changed regularly at this stage. The
field C/N would later be denoted by ℜ . To simplify matters now all the
various intermediate notations will also be denoted by this symbol.]

Now he began on the frontiers of his knowledge, noting a number of
“theorems” without proof. He believed these to be “true”, with a great
emotional involvement invested in their truth. [In many details they later
proved to be inaccurate. To assist the reader, and to prevent this account
growing overlong, four strands will be identified and followed through.
It should be emphasised that this is a rationalisation of what happened in
the sense that these strands were all inextricably interwoven.]

There were three themes that arose at this time which occupied him
in the ensuing days and a fourth arose later.

Theme I concerned an attempt to characterise ℜ  axiomatically, in a
manner similar to the axioms for the real numbers. The real numbers
are uniquely described as an archimedean, complete ordered field
(where archimedean is equivalent to “there are no (non-zero)
infinitesimals” and “complete” means “every cauchy sequence
converges”). Dr Tall noted:

Theorem. ℜ  is a non-archimedean (super)-cauchy complete
ordered field.
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Believing that he had a working definition for his field with
infinitesimals he moved on to the question of extending real functions to
have a meaning over ℜ . He concentrated on power series functions f (x)
= Σanxn and wrote:

Theorem If Σanxn is (a real power series) convergent for
|x|<K, then Σanxn is convergent for x ∈ℜ , |x|<K.

He believed that this theorem (once proved) would allow him to extend
f(x) = Σanxn to take on values in ℜ  for |x| < K and, taking x = a+ε for
infinitesimal ε, he would then be able to attack differentiation as
described.

The third theme was a growing interest in the structure of ℜ . The
hyperreals of Robinson’s theory include a set of “hyperintegers” which
extend the properties of the integers. By analogy he felt that ℜ  must
include a concept of “integer”. He toyed around with some
computations, noting that a finite element of ℜ  is infinitesimally close to
the real number which is its standard part, so every finite element of ℜ
must lie between integers n and n+1. Given any infinite element α∈ℜ ,
he divided by a power of the infinite element α  to get a finite element
α/tn which must then lie between integers k and k+1. Hence α  lies
between ktn and (k+1)tn. This delighted him and he concluded that
elements of the form ktm (for integers k, m) acted like “integers” in ℜ .

(Other ideas noted included an infinitesimal definition of continuity
following Robinson’s theory and a first attempt at integration using thin
elemental strips of equal infinitesimal width. These played no significant
part in the next few days, so they are omitted.)

A fourth theme, involving a reassessment of the original definition of
order in the field R(t) will arise later. His pages of notes and theorems
pleased him. He relaxed, satisfied.

A second day of activity

It was on Friday, the following day, that Dr Tall realised it might be of
interest for him to write down his feelings and conscious thought
processes in addition to the mathematical notes he had to date. This
proved to be a harrowing experience, for in writing down his thoughts
his mind was faster than his pen and he became confused trying to grasp
the mental processes as they flew by. As well as “blow by blow” action
notes he found it necessary to sit down in the evening and summarise the
events of the day. At 6:30 in the evening he recalled the day’s activity as
follows, beginning with the period in the morning:

“I recall that my mind was buzzing with ideas – I still wasn’t clear about
the archimedean bit, nor completeness. However I spent an hour
photocopying music, including “Virginia, don’t go too far” (a Gershwin
song). I thought about the hyperreals of Robinson “going too far”:
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extending too many functions. After coffee I wanted to work but the
tension was unbearable, so I read a novel about Jerusalem which I’d
been reading over the last few days. As I read, mathematical ideas
floated past me, I couldn’t seem to grab them, but the shape of ℜ  was
becoming clearer.

In retrospect (6 hours later) I can’t remember what the ideas were. But at
lunch I sat down and during the meal, the name “superreals” came to
me. The “rational functions” in R(ε) were “superrationals”. I realised
that any superreal could be written as

  a−nε −n + a−1ε −1 + a0 + a1ε + a2ε 2 +K

 i.e. as an infinite “epsilonicimal”

   a−nKa−1a0 ⋅ a1a2K

(This was by analogy with an infinite decimal

  b−n10−n + b−110−1 + b0 + b110 + b2102 +K
 which stands for

   b−nKb−1b0 ⋅ b1b2K)

His notes continued:

… I toyed with the idea of using δ instead of ε and calling the
expression a “deltacimal”, then decided on “epsimal”. I was suddenly
sure that the superrationals were “eventually repeating epsimals”. If

  
r = amε m +K+a0

bnε n +K+b0

I could see the long division process of dividing   bnε n +K+b0  into

  amε m +K+a0  would eventually repeat giving a (super)convergent
repeating epsimal.

EXCITEMENT !

I mused about the “superintegers” again (for this is what I had called the
“integers” in ℜ  and decided they were of the form   a−nKa−1a0 ⋅ 000K
(where ai ∈  Z), so they depended on the choice of ε This didn’t worry
me too much because I felt sure that any two sets of superintegers were
order isomorphic.

He then reviewed the “blow by blow” notes that he had written that
afternoon as he was actually doing the research work. After the above
mentioned ideas had occurred to him he could not stand the tension and
had taken a bus into Jerusalem. There he wandered about the streets
with his mind leaping about excitedly like a butterfly. His notes taken at
the time were a garbled mixture of travelogue and mathematics which
might make little sense to the reader. However, they may be summarised
(and rationalised!) as follows.

His first theme (to characterise ℜ  axiomatically) became interwoven
with his new thoughts on the structure of ℜ . (His new words
“superreal”, “superrational”, “superinteger” intrigued him so much that
they took on a life of their own and suggested properties analogous to
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the corresponding ordinary concepts.) In ordinary analysis the
archimedean property can be characterised as “the integers are not
bounded above in the reals” so he toyed with the idea that his
“superintegers” were not bounded above in the superreals. He was also
growing concerned about a fourth theme: the growing conviction that he
would need to rephrase his original explanation of the order on R(t). He
realised that he was only stressing infinitesimal elements in his theory of
calculus whilst his example emphasised the infinite nature of t.
Substituting x = 1/t he reformulated the definition in terms of x, at first
haltingly, but later smoothly in the following form:

If α(x), β(x) are rational functions in x, then we say
α(x) < β(x)

if for some real k > 0, α(θ) < β(θ) for all real θ in 0 < θ < k.

(Figure 9.)

(For further details the reader may consult [12] or [15].)

y

x

α(x)

β(x)

θ k

α(x)<β(x) because, for some k>0, α(θ)<β(θ) for 0<θ<k

Figure 9

He realised that putting x = ε in this version gives a 1-1 correspondence
between R(x) (as rational functions) and R(ε) (as points on the vertical
line x=ε) where the graph of the rational function meets the vertical
line. (Figure 10.)
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Figure 10

(He saw that the completion processes for R(x) and R(ε) must
correspond, but he hadn’t sorted these ideas out precisely, he just saw
some dim vision.) At this time he relaxed and had a snack.

Relaxation and conflict

After his eventful walk round Jerusalem and his session recalling the
events in writing, as given in the last section, he relaxed and prepared to
go out to dinner. At 8:30 he was just about to leave his room at the
university to go to Dr Vinner’s flat when he had a strange vision which
is difficult to explain to the reader. He imagined the set F of finite
elements and visualised various “infinite levels” (1/ε)F, ( 1/ε2)F obtained
by multiplying by successive powers of the infinite element (l/ε).
Perhaps increasing sequences in one level would be bounded above (by
the next level) and yet the sequence not tend to a limit. Would he need to
have more elements “between” the levels? Was his definition of the
superreals adequate? Walking to Dr Vinner’s flat, he thought of power
series in ε2. Putting δ = ε2, power series in δ were an isomorphic copy
of those in ε, but the former “levels” F, (1/δ)F, (1/δ2)F, ...were really
F, (1/ε2)F, (1/ε4)F,...and these had many elements missing between
them, namely (1/ε)F, (1/ε3)F, … .

The meaning of this obscure vision was not really clear to him and at
dinner the research was not discussed. Dr Tall needed more time to
think things out.
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A day of mixed blessings

On Saturday morning at 8:20 he was cleaning his teeth, thinking
seemingly about nothing in particular when it hit him. His ideas about
the “superintegers” were all wrong! To be useful, every element of ℜ
needed to be between superintegers k and k+1, but what about l/2ε?
Another thought struck him. He had expected to have “superintegers” by
analogy with the “hyperintegers” of Robinson’s theory. But Robinson’s
theory was a more all-embracing theory. It allowed one to consider
sequences as functions on the natural numbers and extend them to
functions on the hypernatural numbers (positive hyperintegers). His
simpler theory only had a hope of extending power series, which were
defined on open intervals. It was totally unreasonable to expect that
sequences could be extended in his theory. It was therefore asking a lot
to expect his theory to have any “superintegers”. There were no
superintegers. He ruefully recalled his Gershwin song, “Virginia, don’t
go too far!” Yet his feelings were not all bad. His long struggle with the
“superintegers” had come to nothing, the concept had no merit. But
Robinson’s hyperintegers needed something like the axiom of choice to
construct them. He should not have expected to get such a rich notion
from a simple algebraic construction like the superreals. To get
“everything” in the superreals was a logical impossibility and now he
had found something—the superintegers—which were not possible.
What was more, he had a heuristic “explanation” as to why they would
not work. He felt a strange mixture of disappointment at his failure and
elation because he felt he knew that he had failed. The remainder of the
Sabbath he relaxed, playing the piano and reading. En route to visit a
friend he had various thoughts about the superreals but was unable to
recall anything precise later on.

The activity slows down

On Sunday morning, being unable to recall much of the thoughts he had
had on the way to his friend’s house, he looked at the notes from earlier
and mused about his theme of characterising the superreals ℜ
axiomatically. Recalling that power series in ε2 were isomorphic to
those in ε, he realised he may have to specify a “first order”
infinitesimal ε to make sure he didn’t have elements “missing” between
the “levels”. Matters were now getting complicated. He didn’t really
understand what he was talking about and he was pressed for time to
prepare a seminar for that afternoon (Sunday being a normal working
day in Israel). He spent most of the time preparing the seminar and his
concern over the confused axiomatic description of ℜ  faded. He made
some brief notes, including the following:
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“I’m not in the same state of super-tension about the superreals as I’ve
decided to call them. I’ve many other things to do, especially a lecture to
write. I feel relaxed about it: it can be left for a while. Other things are
more pressing.”

Interlude in Haifa

On Monday morning (5:30 a.m.) Dr Tall travelled to Haifa where he
lectured in the afternoon at the University and later explained his ideas
to his host, Dr Nesher. Whilst explaining that the superrationals were
“repeating epsimals”, and hence analogues of rational repeating
decimals, warning bells seemed to ring at the back of his mind. He
sensed that something may be wrong but, out of embarrassment, said
nothing. For the next few days he had a full itinerary and apart from a
few ideas about integration (prompted by a lecture he gave at the
Technion) he thought no more about the superreals, or about the
possible problem with repeating epsimals. On Friday he returned to
Jerusalem. He had no feeling of excitation over the superreal theory and
concentrated on things other than mathematics.

First draft of the theory

In the late afternoon on Sunday, in an easy atmosphere, he began
writing the first draft of a paper on the superreals. (Though on earlier
occasions he had written down what he knew when frontier activity
became too tense.) Now he was relaxed and, although there were several
ideas to sort out still, he felt that the basis was there and he should
establish the foundations of the subject. He planned the paper in the
following sections:

I Introduction

2 Ordered extension fields of R

3 The superrationals

4 Extending rational functions to the superrationals

5 Superconvergence and supercauchy sequences

6 Constructing the superreals

7 Extending analytic functions to the superreals

8 Continuity

9 Differentiation

10 Integration

11 Broader horizons.
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Sections l and 2 flowed easily. The introduction contained a brief outline
of intended content and, when he mentioned the superreals, for the first
time he noted that each non-zero superreal α  = arεr + ar+1εr+1 + …
(αr≠0) had a specified order o(α) = r. He had this idea in embryo from
the start, but had never written it down. In writing the paper he now
decided to define superconvergence using the order instead of his
original idea. The sequence sn was to be superconvergent to the limit s
if,

given M, there exists N such that n ≥ N ⇒  o(sn–s)≥M.

Similarly a supercauchy sequence (sn) satisfied

given M, there exists N such that m,n ≥ N ⇒  o(sn–sn)≥M.

Section 2 was a précis of straightforward material from [5] then, in
section 3, he hit his first obstacle. He wasn’t sure how to present the
definition of superrationals as rational functions R(t). Should he define t
to be infinite, and use his fanciful inspiration that an infinitesimal was a
point on the line at infinity, or should he use the version with t
infinitesimal, which he was sadly beginning to realise might be more
practical? His first version was a mishmash, including both!

Another blow

Working on the superrationals again recalled his worries over
“repeating epsimals” which he had not considered for over a week. He
now realised that long division of one polynomial into another might not
repeat. After briefly thinking he could handle the problem if the
denominator was only first degree, he flirted with the idea of
introducing the complex numbers so that all denominators could be
resolved into linear factors and the division could be reduced using
partial fractions. Then he realised that his analogy between rationals and
superrationals was faulty. In dividing one natural number q into another
p to compute the fraction p/q, the remainder at each stage would be less
than q and so only a finite number of remainders were possible, leading
to a repeating decimal. In dividing a polynomial q into a polynomial p
to compute a rational function p/q, all one could say at each stage was
that the remainder had degree less than that of q, and there were an
infinite number of possibilities in general.

Now the superrationals were dying on him in the same way that he
had lost the superintegers. He realised that 1/(1+ a0ε + …+ anεn) could
be written as 1/(1–δ) where δ was an infinitesimal –a0ε – …– anεn and
1/(1–δ)= 1+δ+δ2+… was a repeating δ-mal. But this was little
consolation. A beautiful analogy had failed.
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A fear

Now a worse fear hit him: not only might the theory be trivial, it might
also be well-known! He had remembered some work from his graduate
days. He wrote:

Thinking about the “order o(α) of an infinitesimal α”, I began dimly to
remember about valuation rings. I felt disappointed that the whole theory
might be known. I recalled the quotation “when the spring comes the
violets grow on all sides of the hill” and imagined many people in
different parts of the world rushing to get the theory published. Or
worse, the theory might already be gathering dust in long-forgotten
tomes. He did not wish to speak to anyone until he had worked the ideas
out fully for himself.

[He later discovered that the mathematical theory was already well-
known although his visual insights would play a useful role in cognitive
theory.]

A fresh start and a pleasing discovery

The next morning he awoke refreshed and yet again began writing the
paper from the beginning. The first three sections now came much
easier. Then he became side-tracked by the problem that he had not yet
resolved how to define f(α+ε) for infinitesimal ε! It would have to be
solved sooner or later. In a state of tension again, he had a bath and
mused about all sorts of things freely. He did not sort out f(α+ε),
instead something entirely unexpected hit him. After his bath he wrote
down that rational functions R(δ) in an element δ ∈  R(ε) need not
generate the whole of R(ε). Even if is first order, say δ = ε + ε2, then
R(δ) is only a proper subset of R(ε). But the situation with power series
is different. For instance, the equation ε2 + ε = δ could be solved in the
superreals to give

 ε = −1
2 ± 1

2 (1 + 4δ)
1

2

and the latter could be expanded using the binomial theorem to express ε
as a power series in δ. He became greatly excited, for he believed that
any first order infinitesimal δ = anε n

n=1
∞∑  could be manipulated to

express δ as a power series in ε. This meant that although he was using
one particular infinitesimal ε to construct the superreals, having done
so, all the first order elements were as good as each order. Recalling lan
Stewart’s remark about canonical elements, he realised that the element
ε was just a canonical choice out of the collection of first order elements
which all had equal status. Even though he used the specific element ε to
construct ℜ , it was not so special after all. He did not really need an
axiomatic description of ℜ . It simply consisted of power series in a first
order infinitesimal of the form
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 a–nε–n + … + a–1ε–1 + a0 + a1ε + a2ε2 + …

and any first order infinitesimal would do. His problem of finding an
axiomatic description of the superreals did not get solved, it simply …
evaporated.

Another detail to sort out

Of the four themes mentioned earlier, one, the axiomatic description for
ℜ  had become unimportant to him; another, the structure of the
superreals, in terms of superrationals and superintegers had become
emasculated; the later question of describing R(t) with t infinite or
infinitesimal was in the throes of being decided. Only one theme
remained intractable – the details of the definition of f(α+ε) for
infinitesimal ε.

In terms of the previous discussion, it was now clear that a power
series in any infinitesimal δ was a superreal. Thus an analytic function

f (x) = ∑an xn

gave rise to a superreal f (δ) = ∑anδ n  for any infinitesimal δ. But what
about other values of f(α ) for superreals α  less than the radius of
convergence of the power series? Dr Tall felt matters might go astray
near the radius of convergence. He considered the particular example

f (x) = ∑(−1)n xn / n (| x|<1).

Rearranging the terms of f(x+δ) as

  

f (x + δ) = ∑(−1)n (x + δ)n / n

= ∑(−1)n (x / n + xn−1δ+K),

he took x+δ = 1–ε and found that the coefficient of ε in the power series
became

1 – 1 + 1 – 1 … .

This bothered him. In Robinson’s non-standard analysis, if a function f
was defined for real x satisfying |x| < K, then it extended to a function
for hyperreal x satisfying |x| < K. His counterexample showed that it
would not work for superreal theory.

With the question still open he had to leave the work as his wife
arrived in Israel for a week’s stay. His spare time was now limited to
occasional short periods and he decided (yet again) to begin rewriting
the article, hoping that inspiration would strike him about how to extend
functions before he reached that section of the paper.
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Technical complications

On this further rewrite there were still technical problems to overcome.
His treatment of the order on R(t) remained a mishmash of t as an
infinite element side by side with t as an infinitesimal. He could not bear
to give up his very first revelation of an infinitesimal on the line at
infinity, even though he now realised that he might have to.

He hit the problem of extending functions again. He tried a
completely different approach using functor theory, but that proved
irrelevant and was later discarded. Then a technical complication hit
him straight in the face. If he wished to define f(x+ε) simply as

f (x + ε ) = an (x + ε )n∑ ,
then the partial sums

sn = ar (x + ε )r
r=0
n∑

did not form a supercauchy sequence (because the difference sn–sm was
not necessarily infinitesimal for large m,n).

He toyed with alternative concepts of convergence, blending
superconvergence with ordinary convergence in R [which we omit here]
and eventually left the matter unresolved once more.

In a state of disarray, with a partly conceived theory and a number
of outstanding technical difficulties, his period of research in Israel
came to an end.

Time out

The end of his time in Israel coincided with a temporary halt in his
activities. He returned to England on December 5th to find a mountain
of mail. He finished typing up the paper “Calculations and canonical
elements” because he wanted something tangible to show for his month
in Israel. (It was later published. [10]) The month of December was
fraught with illness (returning to British damp and cold). He discussed
his infinitesimal ideas with colleagues at Warwick but wrote no more.

The theory matures

On January 6th he flew with his family to Montreal for a term at
Concordia University. It was all new, with many arrangements to be
made and two courses to teach. In January and early February he put
aside Tuesdays and Fridays to complete the paper. Once more he started
writing at the beginning.

This time his ideas were more settled. He now eliminated his original
conception of R(t) with t infinite, regretfully losing the idea which
caused the initial breakthrough. His fanciful idea that an infinitesimal
was a point on a line at infinity has never featured in print (except in
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this paper which explains how it happened). He used a notion of
infinitesimal microscope from [5] to be able to “see” infinitesimals. (At
this stage he simply copied the ideas of [5], as he published them in [15],
but he later adapted them for publication in [12].)

The problem of f (x + ε ) = an (x + ε )n∑  was simply side-stepped.
Although he had worked out a different theory of convergence to cover
it, this was never published. Instead he expanded f(a+ε) as a power
series about x= a,

f(a+h) =Σbnhn

and then put h = ε to get a superreal number Σanεn.
He even generalised this slightly to the case where f might have a

pole:

  f (x + h) = b−mh−m +K+b−1h−1 + bnhn
n=0
∞∑ .

This also is clearly a superreal when one substitutes h=ε.
Finally integration was handled using area functions, by analogy with

[5].
The paper was completed on February 12th. It was turgid and ugly

and remains unpublished [11]. Subsequent papers were better; [12], [13],
[14] and have appeared in print. In the ensuing months he refined the
notion of integration and arc-length in a form eminently suited to the
published theory in [12].

Leibniz

Dr Tall realised the importance of the notion of “order of an
infinitesimal” in the history of pre-nineteenth century calculus while
reading a paper of Lakatos. [6] For example, in Leibniz’s theory, the
differential of a product is written

d(uv) = vdu + udv.
Modern commentators note that

d(uv) = vdu + udv + dudv
and refuse to neglect the dudv term. However, if u,v are finite, du is an
infinitesimal of order m, and dv an infinitesimal of order n, then dudv
is of order m+n which is infinitesimally small in size compared with
vdu + udv, and may therefore be neglected. He realised that in non-
standard analysis infinitesimals do not have specified orders, and so the
superreals were a closer match for Leibniz’s calculus than non-standard
analysis [13].

Infinite measuring numbers

At last, in June 1979, there came a time when he was due to meet
Efraim Fischbein once more and he returned to contemplating the
original questions. Thinking of a point marked with a “pencil of
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infinitesimal width ε”, the number of such points needed to fill in a line
AB of finite length l is l/ε which is, of course, infinite. To fill a line CD
of length 2l requires precisely twice as many, (2l)/ε. The “cardinal

number argument” mapping P, distance x from A, onto Q, distance 2x
from C (Figure 5) is exposed! It doubles the scale, so a mark of width ε
on AB is stretched into one of width 2ε on CD. If “points” on CD have
width 2ε, the number in CD is (2l)/(2ε) which is, of course l/ε, the

same number as in AB. The only way that AB and CD can have the
same (measuring) number of points is if those in CD are twice as big as
those in AB!

If the line AB is itself drawn with a theoretical pencil width ε, then
the square WXYZ is made up of horizontal lines width ε. There are l/ε
of them and each one contains l/ε points. The total number of points is
(l/ε)2 which is an infinite number of higher order than l/ε. To be
precise there are l/ε times as many points in WXYZ as in AB. In this

sense there are infinitely many more points in WXYZ than in AB!
These ideas were published in [14].

Reflections

Reconsidering the theory as a whole, it now all seems so inevitable.
These ideas were not invented, they were discovered. Reading about the
process of discovery written in these pages, it is amazing to see the
number of errors made and the false intuitions which had the ring of
truth. Yet such was the intensity of excitement at the time that these
temporary setbacks were insufficient to cause permanent blockages.

Post-rationalising the discovery, it is clear that the researcher already
had most components deep in his psyche. The break-through came, after
several years of interest and lack of understanding of infinitesimals,
when a psychologist asked for a description that could be properly
understood. That description was not satisfactorily given at the time, but
it provoked in the researcher the chain of events here recorded.

The realisation that an infinitesimal could be geometrically imagined
as a “point on a line at infinity” was so stimulating that he forgot the
psychologist’s problem and turned to a more deep-seated quest for a
simple theory of calculus with infinitesimals. He often got bogged down
with technicalities which did not figure in his final publication.

On the other hand, various non-mathematical resonances in his mind
amused him (“rational” functions being thought of as “superrational”
numbers; a Gershwin song, “don’t go too far”). Many “breaks-through”
occurred at a subconscious level. Positive breaks-through were
accompanied by pleasurable feelings, though actual verification (or
realisation of error) took longer. Negative breaks-through usually
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occurred, first as a vague feeling of unease, with the conscious
rationalisation of the error sometimes taking days or even months to
register. (The folly of the “super integers” occurred overnight, the fact
that “superrationals” were not “repeating epsimals” took six days from a
feeling of unease to a formal understanding, the fears concerning the
correct extension of a function were not sorted out for several months.)
That is not to suggest that subconscious activity was going on for all the
intervening period, but there were times of intense mental activity of
some kind which showed that something was going on. Often it was an
external input or the act of explaining ideas to someone else that
triggered off this internal activity once more. But it continued for a
time after external impulses had ceased: it even seemed preferable on
occasion to have a conscious distraction (reading a book) so as not to
disturb the intensity of subconscious thought processes by conscious
probing into the ideas. (A very strange feeling indeed!)

The mind did not seem at all happy to be on the frontiers all the
time. A strong resonance was a boost to maintaining frontier thought
(even if it later proved to be fallacious) but mental conflicts and unease
at too high a level provoked withdrawal into secure regions. One only
needs to look at the number of times the rewriting of the paper returned
to the beginning again to see the extent of the insecurity.

It was nearly a year, until an impending meeting with Efraim
Fischbein, that the original problem of the questionnaire was
satisfactorily resolved.

A classic description of “problem-solving” involves “conjectures”
which are then checked out. Here the researcher never felt that he made
“conjectures”; what he saw were “truths” evidenced by strong
resonances in his mind. Even though they often later proved to be false,
at the time he felt much emotion vested in their truth. These were no
cold, considered possibilities, they were intense, intuitive certainties. Yet
at the same time his contact with them often seemed tenuous and
transient; initially he had to write them down, even though they might
be imperfect, before they vanished like ghosts in the night.

When such “truths” later proved false, it was rarely because of a
coolly considered counter-example. That usually came later still after a
period of mental unease already mentioned. In fact the researcher, when
in a state of mental excitement, did not wish to check the detail at all,
lest he lose the thread of the overall idea. It is remarkable the number of
times that there were small errors which went unnoticed at the time but
later produced unease, then correction.

These events fit very well with the descriptions given of the classic
sequence of activities in research given by Poincaré, and reproduced in
[3]. Poincaré reports four basic stages: preparation, incubation,
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illumination, verification. The only difference here is that so many
facets are being intertwined together that one stage in one part of the
theory occurs simultaneously with a different stage in another part.
Poincaré suggests that, during a period of incubation, it is the aesthetic
manner in which ideas fit together which cause them to surface to the
conscious mind. I would put it in a more mundane manner. Brain
activity is an electrochemical phenomenon, which I believe to work
through electrical resonances. I conjecture that it is the strength of
subconscious resonances that cause them to surface. The emotions tell us
the state of the brain: pleasure with strong resonances, unease with
conflicting resonances. I also conjecture that these emotions are aroused
by the physiological conditions of the brain and that the reason why we
cannot pinpoint the feeling of unease is that there is only a physiological
dissonance at this time; there is not necessarily a subconscious formal
understanding at this stage at all. That comes about by a much slower
(chemical?) change in the nature of the resonating circuits, hence the
time lapse.

Having gone through the tortuous thought processes outlined in this
paper, a process of post-rationalisation takes place. History is mentally
re-written. For instance, I was amazed nearly a year later to realise that
I had defined “super-cauchy” sequences using the ideal In. I subsequently
had come to believe that I had worked with the “order of an element”
from the start. It is for this reason that I am very suspicious of
mathematicians who recall how they did research without taking careful
notes at the time. We forget the twists and the minor errors, but we
remember the pleasure of our successes and the embarrassment of our
major mistakes. This is why I wished to set out the story described here,
warts and all.

A strange thing has now happened. I remember some of the pleasures
(and a few uneasy times) in the development of these ideas, but now the
theory has a life of its own. There is no doubt any more that it is
correct. Small details may still be astray, but the whole system has a
ring of truth about it. Despite the roundabout route to its conception,
other mathematicians could (and have) come independently to the same
ideas. It now seems an independent platonic entity, quite separate from
the individual mind that fumbled to come to grips with it, a piece of
mathematics, a corporate property of mathematicians at large.
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