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What are the activities that constitute mathematical research? Various
well-known mathematicians such as Poincaré, Hadamard and Rolga
given descriptions, but these tend to be general reflections on the
process considered after the event. The aim of this paper is to describe,
within practical limits, the thought processes in a specific piece of
research as they happened. It highlights the research activities of the
author over ten days, relating these to the previous developmeaigasf
over a period of years and the developments which followéere
were flashes of insight, the comintpgether of previous experiences,
analogies both useful and false, and intuitions havingritige of truth
which proved to be embarrassingly inaccurate.

After grappling withideas which seemed complex at timme, the
final product was a theory so inevitable that itseemed like a
mathematical truth discovered. A year later it seemed naive,taviei
and, when presented to students, they fourstraightforward,simple
and obvious. But the tortuous route by which the author came to build
up the theory is a story worth telling, if onlyecause the wathat it
actually happened (as withessed by notes taken dintle¢ wasfar less
glamorous and logical than the memories that wsubsequently
recalled. In soménstancesmemories a year later were qudéferent
from theevidence as concretely represented by the noteselins that
we remember thealient features of a past event and reconstruct the
detail when required. In this way our recollections are far more rational
than the actual processes. Even in the telling of the stohastbeen
necessary to seleataterial and so a certain amount of rationalisation
has inevitably crept in. In doing this | have attempted to givevamall
impression of the research activity and, within ghisgramme,select
certain themes that intertwine together aswuoek progresses. have
written of myself in the third person, as a separate observer imagket
done. This allows me to talk of the incorrect turns | took withdoid
much) embarrassment. The stdrgs beerwritten in such a way that
eventsare usuallyreported without revealingubsequenbccurrences
that were unknown at the time. In this way the reader may participate in
the hopes and fears as they happened without knowing ofréatersals
of fate. When this rule is broken it is signified by the releyaagsage
being placed in square brackets.
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The spur

If AB is a line segment half the length @D, are there thesame
number of points irAB asCD, or more, or less? (Figure 1.)
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Figure 1

If WXYZis a square whose side-length is sagne af\B, doesW XY Z
(and itsinterior) have as many points @83, or more, orless?(Figure
2.)
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Figure 2

These questions were typical of rmmber in a questionnairfl] to
investigate a child’s concept afifinity posed byProfessor Fischbein of
Tel-Aviv University. A natural intuitive response by a child might be
that there are twice as many points in CD as AB and many pwns

in the square than on the line. These answers are not in accord with the
acceptedtheory of cardinal numbers. They prompted the author to
embark on aliscussion withProfessor Fischbein which led tof@mal
theory vindicating these intuitive responses, [12], [ 14].

An earlier ambition recalled

A project of the author which had lain fallow for several years provided
the second ingredierfor the ensuing research work—his interest in
infinitesimals. He wasware of AbrahanRobinson’spioneeringwork
on non-standard analysif/] and had briefly studied a text on
infinitesimal calculus by Keislef5]. But he failed to understaneither
book completely and this gave rise to an ambition to develeimaler
theory of calculus using infinitesimal techniques. (Thesearchhere
described gave rise to such a theory, subsequently published, [12], [13].)
In brief, Robinson’'stheory allows one to consider aaxtended
number line which includes infinitesimal quantities which are smaller in
size than any positiveeal number. The reciprocals efich quantities
are infinite in thesensethat they arelarger in size than anyreal



number. Robinson’s extendedumber system, the hyperrealimbers,
has three kinds of element:

(i) the setl of infinitesimals,

(i) the seftF of finite numbers, of the formx+¢& where r is a
real number and is an infinitesimal,

(i)  the set of infinite elements.

If one includes zero as an infinitesimal then algebraidals/an ideal in
the ringF.

For the purpose of reading this paper, all the reader needs to know is
that for any finite hyperreal numberx+9, the real numbex is called
thestandard partof a and is denoted by at In intuitive terms taking the
standard part is essentially the process of ignoring the infinitegaral
of a finite hyperreal. In algebraic terms, howevelhas avery precise
meaning. It may be shown that the mapFstR is a ring
homomorphism with kerndl

In Robinson’s calculusne may therefore define the derivativéx)
by computing(f(x+¢&)—- f(x))/ € (for a non-zeranfinitesimal €) and
then taking the standard part. For instanc@xijf= x2, then

f(x+&)-f(x) _(x+€&)°-x
£

=2X+E&,
£
so f'(x)=st(2x+ €) = 2x.

The historical process of computing with infinitesimal quantities and
then ignoring them nowas a strictly logicaformulation. But what is
an infinitesimal?

An example of a system with infinitesimals

At the time of beginning this work in 1978, Dr Talkas onlyaware of
one example of a simple system including infinitesim@®binson’s
system involves a logicalonstruction). In a simple system, now to be
described, infinitesimals are represented not as points on a line, but as
rational functions. An understanding of this is crucial in what follows,
so we spend a little time considering it.
Let R(t) be the field of rational functiont)/g(t) wheref(t) andg(t)

are polynomials in an indeterminateOne defines a non-zemational
function a(t)=f(t)/g(t) to be “positive” or “negative” as follows. The
non-zero polynomial$(t), g(t) have only a finite humber of zeros, so
for real x exceeding theseeros, the sign ofi(x) is strictly positive or
negative and this is defined to be the siga@j. For instance,

(t2=3t)/(t+1)
Is “positive” according to this definition because

(x2=3x)/(x+ 1) = x(x=3)/(x+1) >0 for realx >3.
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Next we order rational functions by defining
a(t) > B(t) if and only ifa(t) —B(t) is “positive”.

For instancd > 27 because the rational functibf27 is positive. In fact
t>a for any real numbea, which leads to the reason why this example is
so crucial. InR(t) the element is greater than any real numbearin
general we sawy(t) is positive infiniteif a(t) > a for all real numbers.
The element is “infinite” in this sense.

Geometrically one may visualise the comparison betwegional
functions by drawing their graphs. A rational function is “positive” if its
graph is above the axis for large valued ahd the relatioro(t) > (3(t)
holds when the graph af(t) is above that of(t) for largevalues oft.

In Figure 3 weseethatt is positive and > a for every reala, sot is
positive infinite.

Ay
y=t

y=a

gl

from here on, the graph
of y=t is abovey=a

Figure 3

In Figure 4 we see that 0 < ¥ a for all positive reala, simply because
the graph of=1/ is betweery=0 andy=a for large positive values df



y=a
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Figure 4

Thus 11 is apositive infinitesimaln the sense that it is smaller than any
positive reala and larger than 0.

Dr. Tall's ambition was to use this fiel®(t) as the basisor the
theory of calculus with infinitesimals.His problem was thatthese
infinitesimals werefunctions not points. In addition, he needed to be
able to computd'(a +€) for real a and infinitesimale to be able to
computef'(x). He couldsee how to do this wherf was arational
function because wheai IR ande[IR(t), thenf(a+e) may be considered
as a rational function of a rational function and the composition of two
functions gives)(a+e) [ R(t). He could notseehow to extend th&leas
to more general functions. He gave up.

The events leading to the first insight

In the summer of 1978 Dr Tall attended a conference on the psychology
of learning mathematics in whicRrofessor Fischbein described his
experiments on children’s intuition of infinity, mentioned above. He
noted that Professor Fischbein’s interpretation of infimfs essentially

a cardinal infinity and he resolved to explain the alternative notions of
infinity to broaden his perspective.

On November 6th 1978 Dr Tall flew to Israel to spend a month with
Dr Vinner at the Hebrew University of Jerusalem, with visits planned to
Tel-Aviv (to talk to Professor Fischbein) and Haifa.

In the first week he drafted a paper @alculations and canonical
elements[10] which he had beguearlier with lan Stewart ifBritain.
This describes the schism that has arisen between the ntbdeny of
equivalence relations and thelassical art of computation with



representative (ofcanonical”) elementérom equivalence classe$his
proved to be relevariiecause of ararlier remark of Dr Stewart who
had said “the trouble with non-standamdalysis is thathere aren’t any
canonical elements”. In the fie”(t) Dr Tall considered that themgas
a “natural” choice of canonical infinitesimal, the rational functian 1/

He also studied a pap¢2] on mathematics education ardstory
which mentioned infinitesimals, so they were at tbheefront of his
mind.

On the afternoon of Tuesday 7th November he brought up the topic
of infinitesimals with Dr Vinner and his wifeHava (also a
mathematician) and rehearsed the infinitesimal interpretatiort.ofHé
following week on Thursday 16th November he travelled to Tel-Aviv to
talk to Professor Fischbein.

The confrontation

At lunch time on Thursday 16th November, Dr Tdikcussed the
research of Professor Fischbein and Dina Tirgsh on children’s
intuition of infinity. He tried to explain that, jusecause the children’s
intuition did not coincide with that of cardinal number, it did negan
that they were formally wrong. The cardinal explanation is thate

are the same number of elements InAB as CD because the
correspondence between the pdon AB, distancex from A, andQ

on CD, distance 2 from C, is a one-one correspondence between the
line-segment&\B andCD.

A P B

X

C X 0 D
Figure 5

There is also a known 1-1 correspondence betwd@rand the square
WXYZof Figure 2, so, in the cardinal numbssnsethere are as many
points on the line segments as in thguare. Many children in the
experiments considered there were twice as many poinDiasAB
and many more points in the square.

Dr Tall suggested that ifAB has length/ and a “point” had
infinitesimal sizee, there would bé/e points inAB and (2)/e in CD,

twice as many. Similarly there wer#g)2 points in the square, fanore



than inAB. In fact, for infinitesimal the ratidé/¢ is infinite, so there are

infinitely many more points in the square than in the line segment.

Professor Fischbein was horrified at such an explanationnarsted
on having a clear definition of the notions of infinitesimal and infinite
elements. In fact, he wantechore, he wanted to beshown an
infinitesimal explicitly.

Dr Tall slipped into his glib explanation that the graph df cbuld
be considered as an infinitesimal. Themas an impasseProfessor
Fischbein, as a psychologist, was not prepareactept such an idea. A
formal definition of an infinitesimal cut no ice with him. Dr Tall drew a
picture something like Figure 4. Hesed this diagram in an attempt to
demonstrate that foa > 0 the graph ofy=1/ is ultimately belowy=a
for large enough values. Professor Fischbeias still not satisfied, he
wished to see an infinitesimal asm@mall quantitynot as a graph. Dr Tall
countered this by pointing out that any vertical ks mety=1/ above
y=0 and belowy=a for sufficiently largek. (Figure 6.)

Ay
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>
y=0
t=k
Figure 6

Of course, for smallevalues ofa, larger values ofk are required. Dr
Tall suggested that Professor Fischbein imagine a very large vakje of
in fact to be able to handlall positive a, the best way would be to
imagine a vertical line at infinity. Horizontal lingsa meet this line at a
height a, and the graphy=1/t meets the “line at infinity” at an
infinitesimal height above theaxis. (Figure 7.)



Ay
line at infinity
y=2 <« Neighta
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y:
Figure 7

This did not satisfy Professor Fischbein either, but the idea had a
profound effect on Dr Tall, who had never consideredbetfore!
ProfessorFischbein’sprobing had forced him into describing figure 7
and the new insight intrigued him, forcing him to consider it in detalil.

A fanciful idea and many “theorems”

Returning to Jerusalem at around 5:00 in the evening with darkness
falling and a young soldier's gun near his left ear, he hadidaen
inspiration. He lee=1/ and thought of ¥/ as an infinite point on the

axis. He then realized that if he took his vertical line at infithiyough

the point 1¢, then this would meet the graphf) at a point which was

at a height(1/€) above the axis. In this way he found he hadiract
correspondence between ratiohaictions {t) andpointson the vertical

line through 1¢ where the graph meets the line. (Figure 8.)



line “at infinity”
4y t=1/

function y=f(t) / point f(1/g)
A

f(1/e)

Figure 8

He arrived at the fancifuldea that aninfinitesimal was apoint on a
certain line ainfinity! This fascinated and excited hirspurring him to
feverish activity. He still could only explain wherational functions
met this line. Could he “complete” it so that all other functions would
meet it in a sensible way? particular, could he define &) for the
particular infinitesimale=1/t and any functionf? He began with the
function f(x) = sirx and feverishly scribbled on an old brown envelope.
He considered

sine = £—€3/3! + ...

= |lim sy
n- oo
where
3 2n-1
s=e-S 4 +(-)"tE
3! (2n-1)!

Substitutinge=1/ he saw that sewas a “limit” of elements ifr(t).

Now his troubles began. He could only fitfully remember how to
handle these kinds of limits (which he had studied fifteen years before as
a postgraduate). He thought he shouldrdte the set of all multiples of
en and then the notion of convergersze s should be:

“given N, there existdM such thah>M impliess,—s [1 IN.”

Similarly a “cauchy sequence” should be
“given N, there existdVl such thatn,n >M implies $-s, O IN.”



(These conceptsvere later re-christened “super-convergence” and
“super-cauchy sequence” becausetdrens became infinitesimallglose
to the limit or to each other.)

Meanwhileworries niggled at thdack of his brainbecause of his
inability to remember the theory accurately. (Gmerry, for instance,
was becausé was not an ideal ifR(t), the latter being a field, and
having no proper ideals. This worried him for days, until he realized he
was confusing theoles of R(t) and the subring- of finite elements in
R(t). The subsetN was an ideal if!)

Back in his room at the Hebrew University wherewas now based,
he tried to consolidate his thoughts in writing.

Using the definitions he had just established, heCldte the set of
(super-)cauchyequenceandN the subset osequencesvhich (super-)
converged to zero. Following the standard completion process he
defined his desired extension ring to Q.

At this stage he was elated at what he had donendwibus of the
faulty details. Howeverrather than check the details, heturned to
secure ground and writing up earlier results. He felt btstthoughts
were unstable and he might lose the thread if he tried to sort out the
difficulties. Far better to write down thieasic material that heknew
well to increase his security before attacking the frontier!

He outlined the story so far up to the definition @N (without
checking the details]His notation changedegularly at this stage. The
field C/N would later be denoted by. To simplify matters now all the
various intermediate notations will also be denoted by this symbol.]

Now he began on the frontiers of his knowledge, noting a number of
“theorems” without proof. Héelieved these to bédrue”, with a great
emotional involvement invested in their truth. [In many details taesr
proved to be inaccurate. To assist the reader, and to prevent this account
growing overlong, four strands will be identified and followtadough.

It should be emphasised that this is a rationalisation of what happened in
the sense that these strands were all inextricably interwoven.]

There were thre¢ghemes that arose at this time which occupied him
in the ensuing days and a fourth arose later.

Theme | concerned an attempt to charactdrisaxiomatically, in a
manner similar to the axionfer the real numbers. The real numbers
are uniquely described as an archimedean, commedered field
(where archimedean is equivalent to “there are (mon-zero)
infinitesimals” and “complete” means “every cauchgequence
converges”). Dr Tall noted:

Theorem.l isa non-archimedean (super)-cauchy complete
ordered field.

—-10-



Believing that he had a working definitiofior his field with
infinitesimals he moved on to the question of extending real functions to
have a meaning ovét. He concentrated on power series functibri(s)

= 2a,X" and wrote:

Theoremlf Zaxn is (a real power series) convergent for
IX|<K, thenZa.xn is convergent fok 0 , [x|<K.

He believed that thitheorem (once proved) would allow him ¢atend
f(x) = Za,xn to take on values ifl for [x| < K and, takingx = ate for
infinitesimal €, he would then be able to attack differentiation as
described.

The third themavas agrowing interest in the structure &f. The
hyperreals ofRobinson’stheory include a set of “hyperintegersthich
extend the properties of the integers. By analogy he felt [fhahust
include a concept of ‘“integer”. He toyed around witkome
computations, noting that a finite element_ofs infinitesimally close to
the real number which is its standard part, so every finite element of
must lie between integersandn+1. Given any infinite elemerda[l ,
he divided by a power of the infinite elemento get a finite element
a/tm which must then lie between integétsand k+1. Hencea lies
betweenktr and k+1)tn. This delighted him and he concluded that
elements of the forratm (for integersk, m) acted like “integers” irl.

(Otherideas noted included an infinitesimal definition of continuity
following Robinson’s theory and a first attempt at integration using thin
elemental strips of equal infinitesimal width. These played no significant
part in the next few days, so they are omitted.)

A fourth theme, involving a reassessment of the original definition of
order inthe field R(t) will arise later.His pages of notes artheorems
pleased him. He relaxed, satisfied.

A second day of activity

It was on Friday, the following day, that Dr Tall realised it might be of
interest for him to write dowrhis feelings and conscious thought
processes in addition to the mathematical notes he had to date. This
proved to be a harrowing experience, for in writing ddwsthoughts
his mind was faster than his pen and he became confused trygngsio
the mental processes as they flew by. As well as “blow by blow” action
notes he found it necessary to sit down in the evening and summarise the
events of the day. At 6:30 in the evening he recalledd#tyés activity as
follows, beginning with the period in the morning:

“I recall that my mind was buzzing with ideas — | stithsn’t clear about

the archimedearbit, nor completeness. However | spent an hour

photocopying music, including “Virginia, don’t go too far” Gershwin
song). |thought about the hyperreals Biobinson “going toofar”:

—-11 -



extending too manyunctions. After coffee | wanted towork but the
tension was unbearable, soelad a novel about Jerusalem which I'd
been reading ovethe lastfew days. As | readmathematicalideas
floated pasme, |couldn’t seem to grathem, butthe shape of] was
becoming clearer.

In retrospect (6 hours later) | can’t remember what the ideas were. But at
lunch | satdown and duringthe meal, the name'superreals”’came to
me. The “rational functions” inR(g) were “superrationals”. tealised
that any superreal could be written as
ane " +taqe +aptaE+as ..
l.e. as an infinite “epsilonicimal”

an...a18 [Hay...

(This was by analogy with an infinite decimal
b-n10" +b3107" + by + b 10+ bp10° +...
which stands for
b-n...b-1bo Obby...)

His notes continued:

. | toyed with the idea ofusing & instead ofe and calling the
expression ddeltacimal”, then decided on “epsimal”.was suddenly
sure that the superrationals were “eventually repeating epsimals”. If

_amE"+.. .+
bne"+...+bo

| could see thdong division process of dividingo,e"+...+by into
an€"+...+a would eventually repeat giving gsuper)convergent
repeating epsimal.

EXCITEMENT !

| mused about the “superintegers” again (for this is what Ich#ed the

“‘integers” in[J and decided they were dfie form a.,...a1a, [000...

(wherea [0 Z), so they depended on the choicee dthis didn’tworry

me too much because | falirethatany two sets of superintegers were

order isomorphic.
He then reviewed the “blow by blow” notes that he had written that
afternoon as hevas actually doing theesearch work. After thabove
mentioned ideas had occurred to him he could not stand the tension and
had taken a bus into Jerusalem. There he wandered about the streets
with his mind leaping about excitedly like a butterflyis notes taken at
the time were a garbled mixture of travelogue and mathemahih
might make little sense to the reader. However, they may be summarised
(and rationalised!) as follows.

His first theme (to characteridé axiomatically) becamanterwoven

with his new thoughts on the structure &f. (His new words
“superreal”, “superrational”, “superinteger” intrigued him so much that
they took on a life of their own angliggestegropertiesanalogous to

r
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the corresponding ordinaryconcepts.) In ordinary analysis the
archimedean propertgan be characterised as “the integers are not
bounded above in the reals” so he toyed with the idea that his
“superintegers” were not bounded above in the superrealsvaselso
growing concerned about a fourth theme: the growing conviction that he
would need to rephrase his original explanation of the ordd®(on He
realised that he was only stressinfinitesimalelements in his theory of
calculus whilst his example emphasised timdinite nature of t.
Substitutingx = 14 he reformulated the definition in terms xf at first
haltingly, but later smoothly in the following form:

If a(x), B(x) are rational functions ir, then we say

a(x) < B(x)

if for some reak > 0, a(0) <[3(6) for all real® in 0 <0 <Kk.
(Figure 9.)
(For further details the reader may consult [12] or [15].)

Ay

a(x)<B(x) because, for sone>0, a(B)<p(0) for 0<O<k

Figure 9

He realised that putting =€ in this version gives a 1-1 correspondence
betweenR(x) (as rational functions) and(e) (as points on the vertical
line x=¢) where the graph of the rational function meets \tbeical
line. (Figure 10.)
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(He saw that the completion processder R(x) and R(g) must
correspond, but hbadn’t sorted these ideas out precisely, he just saw
some dim vision.) At this time he relaxed and had a snack.

Relaxation and conflict

After his eventful walk round Jerusalem and bkessionrecalling the
events in writing, as given in the last section, he relaxed and prepared to
go out to dinner. At 8:30 hevas just about to leave hreom at the
university to go to Dr Vinner’s flat when he had a strange vision which
is difficult to explain to thereader. Heimagined the seF of finite
elements and visualised various “infinite levdl$k)F, ( 1/€2)F obtained
by multiplying by successivepowers of the infinite element V.
Perhaps increasingequences ione level would be bounded above (by
the next level) and yet the sequence not tend to a limit. Would he need to
have moreelements “between” the leveld®as hisdefinition of the
superreals adequate? Walking to Dr Vinner's flat, he thoughtoafer
series ing2. Puttingd = €2, power series i® were an isomorphicopy
of those ing, but theformer “levels” F, (10)F, (1/62)F, ...were really
F, (1/e2)F, (1/e4)F,...and these hadhany elements missing between
them, namely (E)F, (1/e3)F, ... .

The meaning of this obscure vision was not really clear to him and at
dinner the researclwas not discussed. Drall neededmore time to
think things out.
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A day of mixed blessings

On Saturday morning at 8:20 hsas cleaning his teeth, thinking
seemingly about nothing in particular when it hit hikis ideas about

the “superintegers” were all wrong! To be useful, every elemeni of
needed to be between superintegerand k+1, but what about /22
Another thought struck him. He had expected to have “superintegers” by
analogy with the “hyperintegers” ¢&tobinson’stheory. ButRobinson’s
theory was amore all-embracing theory. It allowed one to consider
sequences afunctions on the natural numbers and extend them to
functions on the hypernatural numbers (positive hyperintegers). His
simpler theory only had a hope of extending power series, whéasie
defined on open intervals. livas totally unreasonable to expect that
sequences could be extended inthmory. Itwasthereforeasking a lot

to expect his theory to have any “superintegerBhere were no
superintegersHe ruefully recalled his Gershwin song, “Virginidon't

go too far!” Yet his feelings were not all badis long struggle with the
“superintegers” had come to nothing, the concept haaneat. But
Robinson’shyperintegers needed something like the axiom of choice to
construct them. He should not have expected to get suich anotion
from a simple algebraic construction like the superreals. To get
“‘everything” in the superrealwas a logical impossibility and now he
had found something—the superintegers—which were not possible.
What wasmore, he had a heuristfexplanation” as to why they would
not work. He felt a strange mixture of disappointment at his failure and
elation because he felt he knew that he had failed. The remainder of the
Sabbath heelaxed, playing the piano and reading. En route to visit a
friend he had various thoughts about the superrealsvasitunable to
recall anything precise later on.

The activity slows down

On Sunday morning, being unable to recall much of the thoughts he had
had on the way to his friend’s house, he looked at the frot@searlier
and mused about his theme of characterising the superieals
axiomatically. Recalling that power series g& were isomorphic to
those ing, he realised he may have to specify a “firstder”
infinitesimal € to make sure he didn’'t have elements “missihgtween
the “levels”. Matters were now getting complicated. He dideally
understand what he was talking about and he was préssdine to
prepare a seminar for that afterno@unday being a normatorking
day in Israel). He spent most of the tipeeparing the seminar and his
concern over the confused axiomatic descriptiorilofaded. Hemade
some brief notes, including the following:
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“I'm not in the same state &uper-tension abotite superreals as I've
decided to call them. I've many other things to do, especidégtare to

write. | feel relaxed abodut: it can be leftfor a while. Otherthings are

more pressing.”

Interlude in Haifa

On Mondaymorning (5:30 a.m.) Dr Tall travelled tdaifa where he
lectured in the afternoon at the University and later explainedléas

to his host, Dr Nesher. Whilst explaining that the superrationaise
“repeating epsimals”, and hence analogues rafional repeating
decimals, warning bellseemed taring at the back of his mind. He
sensedhat something may be wrong but, out of embarrassnsand,
nothing. For the next few days he had a fuilerary and apart from a
few ideas about integratiofprompted by a lecture he gave at the
Technion) he thought no more about the superreals, or about the
possibleproblem with repeating epsimals. On Friday teturned to
Jerusalem. He had no feeling of excitation over the superreal theory and
concentrated on things other than mathematics.

First draft of the theory

In the late afternoon on Sunday, in aasy atmosphere, hdegan
writing the first draft of a paper on the superreals. (Thougleanier
occasions he hadritten down what he knew whefmontier activity
became too tense.) Now he was relaxed and, although there were several
ideas tosort out still, he felt that théasis wasthere and heshould
establish the foundations of the subject. He plannedp#per in the
following sections:

| Introduction

Ordered extension fields &

The superrationals

Extending rational functions to the superrationals
Superconvergence and supercauchy sequences
Constructing the superreals

Extending analytic functions to the superreals
Continuity

Differentiation

Integration

Broader horizons.
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Sections | and 2 flowed easily. The introduction contained a brief outline
of intended content and, when he mentioned the superreals, forsthe
time he noted that each non-zero supereat ae’ + ar+1€™1 + ...
(ar£0) had a specifiedrder da) = r. He had this idea in embryloom
the start, but had never written it down. In writing the paper he now
decided to define superconvergence using dnéer instead of his
original idea. Thesequence, was to besuperconvergent to the lim#
if,

given M, there existdN such than =N O o(sp—s)=M.
Similarly a supercauchy sequencg) &tisfied

given M, there existdN such thaim,n> N [J o(sp—sn)=M.

Section 2 was @récis of straightforward material frorb] then, in
section 3, he hit hidirst obstacle. Havasn’'t sure how to present the
definition of superrationals as rational functid®($). Should he definé¢
to be infinite, and use his fanciful inspiration that an infinitesimas a
point on the line at infinity, or should hase the version witht
infinitesimal, which he was sadly beginning to realise mightmmze
practical? His first version was a mishmash, including both!

Another blow

Working on the superrationals again recalled his worrigger
“repeating epsimals” which he had not considda@dover a week. He
now realised that long division of one polynomial into another might not
repeat. After briefly thinking he could handle the problem if the
denominator was only first degree, he flirted with the idea of
introducing the complex numbers so that all denominators could be
resolved into linear factors and the division could be reducgdg
partial fractions. Then he realised that his analogy between rationals and
superrationals was faulty. In dividing one natural nundpérto another
p to compute the fractiop/q, the remainder atach stage would dess
thanqg and so only a finite number of remainders were possible, leading
to a repeating decimal. In dividing a polynomaginto a polynomialp
to compute a rational functigo'q, all one could say at each stage was
that the remainder hadegreelessthan that ofg, and there were an
infinite number of possibilities in general.

Now the superrationals were dying on him in fane way that he
had lost the superintegers. He realised that 1&g+ ...+ anen) could
be written as 1/(18) whered was an infinitesimal age — ...—ane" and

1/(1-0)= 1+0+02+... was a repeating 6-mal. But this was little
consolation. A beautiful analogy had failed.
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A fear

Now a worse fear hit him: not only might the theory be trivial, it might
also be well-known! He had remembered some waorkn his graduate
days. He wrote:

Thinking about the “ordeo(a) of an infinitesimala”, | began dimly to
remember about valuation rings. | felt disappointed that the whole theory
might beknown. | recalled the quotatiotwhen the spring comes the
violets grow on all sides ofthe hill” and imagined many people in
different parts ofthe world rushing toget the theorypublished. Or
worse, the theory might already be gatheridgst in long-forgotten
tomes. He did not wish to speak to anyone until he had worked the ideas
out fully for himself.

[He later discovered that the mathematical theorgs already well-
known although his visual insights would play a useful role in cognitive
theory.]

A fresh start and a pleasing discovery

The next morning he awoke refreshed and yet again began writing the
paper from the beginning. The first threections now came much
easier. Then he became side-tracked byptbblem that he had not yet
resolved how to defin§a+¢) for infinitesimal €! It would have to be
solved sooner or later. In state of tension again, he had a bath and
mused about all sorts of things freely. He did not sort fput-€),
instead something entirely unexpected hit hifter his bath hewrote
down that rational function®(d) in an elemen® O R(¢) need not
generate the whole d®(€). Even if is firstorder, sayd = € + €2, then
R(d) is only a proper subset &(€). But the situation with power series
is different. For instance, the equatigh+ € = 6 could be solved in the
superreals to give

£= -1+ 1(1+40)"

and the latter could be expanded using the binomial theorem to egpress
as a power series ih He became greatly excitethr he believed that

any first order infinitesimal 5=z::1an£” could be manipulated to

expres as a power series m This meant that although he was using
one particular infinitesimat to construct the superreals, havidgne

so, all the first order elements were as good as esatdr. Recalling lan
Stewart'sremark about canonical elements, he realised that the element
€ was just a&anonicalchoice out of the collection of firsirder elements
which all had equal status. Even though he used the specific elen@nt
constructl], it was not so specialfter all. He did not reallyneedan
axiomatic description ofl. It simply consisted of power series irfiest
order infinitesimal of the form
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an N+ ... +tael+ay+ae +aE2+ ...

andany first order infinitesimal would do.His problem of finding an
axiomatic description of the superreals did not get solved, it simply ...
evaporated.

Another detail to sort out

Of the four themes mentioned earlier, one, the axiomatic description for
[0 had become unimportant to him; another, the structure of the
superreals, in terms of superrationals and superintegersbdw@ame
emasculated; théater question of describingr(t) with t infinite or
infinitesimal was in thethroes of being decided. Only one theme
remained intractable — the details of the definition f@d+¢) for
infinitesimal €.

In terms of the previous discussionwas nowclear that gpower
series in any infinitesima was a superreal. Thus an analytic function

f(X)= S anx"

gave rise to a superredd) = Ya,d" for any infinitesimald. But what
about othervalues off(a) for superrealsa lessthan the radius of
convergence of the power series? Dr Tall felt matters might go astray
near the radius of convergence. He considered the particular example

f()=3(-1)"x"/n (Ix|<1).
Rearranging the terms &fx+0) as
f(x+0)=3(-1)"(x+8)"/n
=5(-D)"(x/ n+x""5+...),

he tookx+d = 1-€ and found that the coefficient efin the power series
became

1-1+1-1....

This bothered him. IfRRobinson’snon-standard analysis, if a functidn
was definedor real x satisfying X| <K, then it extended to a function
for hyperrealx satisfying X| < K. His counterexample showed that it
would not work for superreal theory.

With the question still open he had to leave the work as his wife
arrived in Israel for aveek’s stay. His spare timewas now limited to
occasionakhort periods and he decided (yet again) to begwriting
the article, hoping that inspiration would strike him about how to extend
functions before he reached that section of the paper.
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Technical complications

On this further rewrite there were still technical problemswercome.
His treatment of theorder onR(t) remained a mishmash ofas an
infinite element side by side withas an infinitesimal. He could nbear

to give up his very first revelation of an infinitesimal on the line at
infinity, even though he now realised that he might have to.

He hit the problem of extending functions again. He tried a
completely different approach using functor theory, but thedved
irrelevant andwas later discarded. Then a technical complication hit
him straight in the face. If he wished to defifvere) simply as

f(x+e)=Y an(x+¢)",
then the partial sums

S = T e (x+e)
did not form a supercauchsequence (because ttigference s—sm was
not necessarily infinitesimal for largg,n).

He toyed with alternative concepts of convergence, blending
superconvergence with ordinary convergencR jmhich we omit here]
and eventually left the matter unresolved once more.

In a state ofdisarray, with a partlyconceived theory and aumber
of outstanding technical difficulties, his period of researchisiael
came to an end.

Time out

The end of his time in Israel coincided withtemporary halt in his
activities. He returned to England on December 5th to find a mountain
of mail. He finished typing up the papé&Calculations and canonical
elements” because he wanted something tangible to &hvols month

in Israel. (Itwas later published[10]) The month of December was
fraught withillness (returning to Britishdamp and cold). Heiscussed

his infinitesimal ideas with colleagues at Warwick but wrote no more.

The theory matures

On January 6th he flew with his family to Montrefdr a term at
Concordia University. lwas all new, with manyarrangements to be
made and two courses to teach. In January and Eaftyuary he put

aside Tuesdays and Fridays to complete the paper. Once more he started
writing at the beginning.

This time his ideas were more settled. He now eliminatedrigsnal
conception ofR(t) with t infinite, regretfully losing the idea which
caused thenitial breakthrough.His fanciful idea that an infinitesimal
was a point on a line anfinity has never featured in print (except in
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this paper which explains how it happened). He used a notion of
infinitesimal microscope fronf5] to beable to“see” infinitesimals. (At

this stage he simply copied the ideas of [5], as he published thEg8],n

but he later adapted them for publication in [12].)

The problem of f(x+¢) = Zan(x+£)” was simply side-stepped.
Although he had worked out a different theory of convergenamver
it, this was never published. Instead he expand@de) as a power
series about= a,

f(a+h) =Zbphn
and then puh =€ to get a superreal numbEanen.

He even generalised this slightly to tb@sewheref might have a

pole:

f(x+h)=b-mh ™+...+bah™ + T boh".

This also is clearly a superreal when one substitutes

Finally integration was handled using area functions, by analogy with
[5].

The papemwas completed oRebruary 12th. lwasturgid and ugly
and remains unpublished [11]. Subsequent papers were heRp13],
[14] and have appeared print. In theensuing months he refined the
notion of integration and arc-length in a form eminemstlyted to the
published theory in [12].

Leibniz

Dr Tall realised the importance of the notion of “order of an
infinitesimal” in the history of pre-nineteenth century calculus while
reading a paper of Lakatog] For example, in_eibniz’s theory, the
differential of a product is written

d(uv) = vdu + udv.
Modern commentators note that

d(uv) =vdu + udv + dudv
and refuse to neglect thiridvterm. However, ifu,v are finite,du is an
infinitesimal of order m, anddv an infinitesimal oforder n, thendudv
Is of order m+n which is infinitesimally small in size compared with
vdu + udy and may therefore be neglected. He realised that in non-
standard analysis infinitesimals do not have spectietérs,and so the
superreals were e@loser matchfor Leibniz’s calculus than non-standard
analysis [13].

Infinite measuring numbers

At last, in June 1979, there came a time whemnwhs due to meet
Efraim Fischbein once more and heturned to contemplating the
original questions. Thinking of a point marked with a “pencil of
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infinitesimal widthe”, the number of such points needed to fill in a line
AB of finite length/is Z/l€ which is, of course, infinite. To fill a In€D

of length 2 requires precisely twice as many,/) 2. The “cardinal

number argument” mapping, distancex from A, onto Q, distance 2
from C (Figure 5) is exposed! ttoublesthe scale, so a mark of widgh
on AB is stretched into one of widtre n CD. If “points” on CD have
width 2¢, the number InCD is (2/)/(2€) which is, of course//e, the

samenumber as iPAB. The only way thatAB and CD can have the
same (measuring) number of points is if thos€lihare twice as big as
those inAB!

If the line AB is itself drawn with a theoretical pencil wid#) then
the squaraVXYZis made up of horizontal lines width There are//e

of them and each one contaifis points. The total number of points is
(/)2 which is an infinite number ohigher order than /c. To be
precise there aréc times as many points WXYZ as inAB. In this

sensethere are infinitely many more points W XY Z than in AB!
These ideas were published in [14].

Reflections

Reconsidering the theory as a whole, it now se#éms sanevitable.
These ideas were notvented,they werediscovered Reading about the
process of discovery written ithese pages, it is amazing to see the
number of errorsmade and the false intuitions which had the ring of
truth. Yetsuch was the intensity of excitement at the time thase
temporary setbacks were insufficient to cause permanent blockages.

Post-rationalising the discovery, it is clear that the researcher already
had most components deep in his psyche. The break-through @fiere,
several years of interest and lack of understanding of infinitesimals,
when a psychologist askefdr a description that could bproperly
understood. That description was not satisfactorily given at the time, but
it provoked in the researcher the chain of events here recorded.

The realisation that an infinitesimal could be geometrically imagined
as a “point on a line at infinity” was so stimulating thatfbegot the
psychologist'sproblem and turned to a momdeep-seated quesir a
simple theory of calculus with infinitesimals. He often got bogged down
with technicalities which did not figure in his final publication.

On the other hand, various non-mathematical resonances in his mind
amused him (“rational” functions being thought of “asiperrational”
numbers; a Gershwin song, “don’'t go t@s”). Many “breaks-through”
occurred at asubconsciouslevel. Positive breaks-throughwere
accompanied by pleasurable feelings, though actual verification (or
realisation of error) took longer. Negative breaks-throughsually
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occurred, first as avague feeling of unease, with theonscious
rationalisation of theerror sometimes taking days or even months to
register. (The folly of the “super integers” occurred overnight, the fact
that “superrationals” were not “repeating epsimals” took six days a
feeling of unease to tormal understanding, the fears concerning the
correct extension of a function were not sorted out for several months.)
That is not to suggest that subconscious activity was goirfgroall the
intervening period, but there were timesiofense mental activity of
some kind which showed thabmethingwas goingon. Often itwas an
external input or the act of explaining ideas to someelse that
triggered off this internal activityonce more. But it continuedor a
time after externalmpulses had ceased: it even seempezferable on
occasion to have a consciodistraction (reading a book) so as not to
disturb the intensity ofsubconscious thought processes donscious
probing into the ideas. (A very strange feeling indeed!)

The mind did not seem at all happy to be on fitumtiers all the
time. A strong resonancgas a boost to maintaininfjontier thought
(even if it later proved to be fallacious) but mental conflicts amebse
at too high a level provoked withdrawal into secure regions. One only
needs to look at the number of times the rewriting of the pagiarned
to the beginning again to see the extent of the insecurity.

It was nearly a year, until an impending meeting wiltfraim
Fischbein, that the original problem of the questionnaire was
satisfactorily resolved.

A classic description of “problem-solving” involves “conjectures”
which are then checked out. Here the researcher never felt tinsdde
“conjectures”; what he sawwere “truths” evidenced bystrong
resonances in his mind. Even though they often later proved to be false,
at the time he felt much emotion vestedtheir truth. These were no
cold, considered possibilities, they were intense, intuitive certainties. Yet
at the same time his contact with them often seemed tenuous and
transient; initially he had to write them down, even though they might
be imperfect, before they vanished like ghosts in the night.

When such “truths’later proved false, iwas rarely because of a
coolly considered counter-example. That usually came later still after a
period of mental unease already mentioned. In fact the reseavdtemn,
in a state of mental excitemenid not wish to check the detail al,
lest he lose the thread of the overall idea. It is remarkable the number of
times that there were smafrors which went unnoticed at the time but
later produced unease, then correction.

These events fivery well with the descriptions given of tlotassic
sequence of activities iresearch given by Poincaré, and reproduced in
[3]. Poincaré reports fourbasic stages:preparation, incubation,
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illumination, verification. The only difference here is that so many
facets are being intertwined together that etege in ongyart of the
theory occurs simultaneously with a differesiage in anothepart.
Poincarésuggestshat, during a period of incubation, it is thesthetic
manner in whichdeas fit together whichcausethem to surface to the
consciousmind. | would put it in a more mundane mann&rain
activity is an electrochemical phenomenon, which | believenvtok
through electrical resonances. | conjecture that it is the strength of
subconscious resonances that cause them to surface. The emotions tell us
the state of the brain: pleasure with strong resonangesase with
conflicting resonances. | also conjecture that these emai@enaroused

by the physiological conditions of the brain and that the reason why we
cannot pinpoint the feeling of unease is that there is only a physiological
dissonance at this timéhere is not necessarily saibconsciousormal
understanding at this stage at all. That comes about by a shmebr
(chemical?) change in the nature of the resonating circuits, hence the
time lapse.

Having gonethrough the tortuous thought processes outlinethis
paper, a process of post-rationalisattakes place. History is mentally
re-written. For instance, | was amazed nearly a year later to realise that
| had defined “super-cauchy” sequences using the lebsubsequently
had come to believe that | had worked with tbeder of anelement”
from the start. It is forthis reason that | am verguspicious of
mathematicians who recall how they did research without tatangful
notes at the time. We forget tiwists and theminor errors, but we
remember the pleasure of osmccesseand the embarrassment of our
major mistakes. This is why | wished to set out the story deschibes]
warts and all.

A strange thing has now happened. | remember some of the pleasures
(and a few uneasy times) in the development of these ideas, but now the
theory has a life of its own.There is no doubt any more that it is
correct. Small details may still be astray, but the whelestem has a
ring of truth about it.Despite the roundaboubute to its conception,
other mathematicians could (and have) come independently teathe
ideas. It nowseems an independgplaitonic entity, quite separafeom
the individual mind that fumbled to come to grips with it, a piece of
mathematics, a corporate property of mathematicians at large.
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