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Mathematical thinking often extrapolates beyond the practical experience 
of the individual. Limiting processes are a case in point. To understand 
the nature of thinking processes it is insufficient just to analyse the 
mathematics, one must try to understand the thought processes 
themselves. This is of vital importance when we consider mathematical 
intuition, where thinking does not proceed along logical lines. In this 
paper we build on suggestions of Hebb and others as to how the brain 
functions and develop these ideas to give a description of mathematical 
intuition in cognitive terms. In the particular case of limiting processes 
we summarize various results which demonstrate the manner in which 
such processes can be naturally extrapolated to give intuitions of infinity 
quite different from cardinal infinity. 

In the choice of an appropriate terminology to describe the cognitive 
aspects I have been fortunate to be able to work with Dr S. Vinner and to 
develop a model of conceptual thinking including some of his ideas. This 
puts forward possible reasons why an individual can on different 
occasions have apparently conflicting intuitions and yet sense no 
cognitive conflict, yet on other occasions cognitive conflict can occur 
without any explicit reasons being apparent. The various intuitions of 
infinity are rich in such conflicts. 

In the first section of the paper I concentrate on cognitive ideas, 
introducing the formulation developed with Vinner in §2. Then there 
follows a section which briefly describes a formal notion of infinity quite 
different from cardinal infinity. In §4 we will consider various examples 
of infinite processes and indicate how conflicting intuitions of infinity 
can arise. All of these intuitions are natural extrapolations of certain parts 
of finite experience and some of them include a reciprocal idea of the 
infinitesimally small. The threads are drawn together in the final section 
when we review the general notion of intuition in the light of the 
particular examples described in the paper. 
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§1 Intuition and cognitive structure 
As Fischbein observed (1978) at the second conference of IGPME two 
years ago, there are a variety of descriptions of the meaning of intuition. 
Bruner (1966) contrasts intuition with analytic thinking, Poincaré (1913) 
contrasts intuition with logic, as does Hadamard (1945), whilst differing 
with Poincaré over important details. Skemp (1971) contrasts intuitive 
and reflective thinking as different modes of mental activity and 
subsequent work (Skemp, 1979) differs quite considerably from 
Poincaré’s description. Meanwhile, Fischbein (1978) describes intuition 
as immediate knowledge characterised by the properties of self-evidence, 
coercive effect, extrapolative capacity and globality. It is not my purpose 
here to reconcile the differences between these descriptions but to 
underline common features through a consideration of the thought 
processes involved. 

A cognitive approach to intuition can be given using the physiological 
ideas described in D. O. Hebb’s Textbook of Psychology (1972) chapter 4 
or, more recently, in J. Z. Young’s Programs of the Brain (1978). Hebb 
postulates that the mechanism of excitation and inhibition of neurons 
causes activities of cell assemblies in the brain. Sensory information from 
the eyes, for instance, is conveyed both to the area of the brain which 
gives rise to the sensation of sight and also, by a network of diverging 
paths, to other parts of the brain, setting up complex neuronal excitations. 
The stimulation of certain neurons passes messages to others, which 
excite or inhibit them, making them more or less sensitive to subsequent 
stimulation. In this way global mental activity is made up of an amalgam 
of local processes which have been selectively excited. Faced with a 
novel situation the brain can only make sense of it by reacting with such 
an amalgam of mental activity from its currently available cognitive 
structure. This mental activity may be anything but logical and it is such 
activity, performed relatively quickly without analysis, which we term 
intuition. We may wish to qualify this definition by excluding logical or 
reflective processes, or we may wish to add more precise refinements 
such as those of Fischbein. For the moment, however, I will concentrate 
on what I consider the central quality of intuition: the global amalgam of 
local processes from the current cognitive structure selectively stimulated 
by a novel situation. 

§2 Concept image and conflicts 
Vinner (1975) defines an individual’s mental picture of a concept to be 
the set of all visual representations (including symbols) that are 
associated with that concept. He defines the individual’s concept image 
(Vinner, 1980) to consist of the mental picture together with all the 
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properties associated with the concept in the mind of the individual. 
These ideas have been extended in Tall & Vinner (1980) where the 
concept image is regarded as the cognitive structure consisting of the 
mental picture and the properties and processes associated with the 
concept. Thus the concept image consists of all the mental structure, 
conscious or unconscious, that shapes the individual’s notion of that 
concept. This concept image need not be totally coherent. Depending on 
the context, different parts of the concept image may be activated. At any 
given time the portion of the concept image that is activated is called the 
evoked concept image. At different times different concept images may 
be evoked and if these are communicated to an observer then the latter 
may note that there are conflicts in what the individual says or does. 
However, the individual may not be at all disturbed by the conflicts. Such 
potential conflicts only become cognitive conflicts when they are evoked 
simultaneously. Fischbein (1978, p. 155) notes: 

Two opposite interpretations may coexist for a long time without the 
subject being aware of the contradiction. 

On the other hand a cognitive conflict may be partly subconscious, in 
which case the individual may feel a sense of unease and confusion, yet 
not know the reason for it. 

Quite distinct from the complex structure of the concept image is the 
concept definition which is the form of words used to describe the 
concept. Such a concept definition may be formal and given to the 
individual as part of a mathematical theory, or it may be personal, 
invented by the individual to (partially) describe his concept image. A 
personal concept definition may be considered as part of the concept 
image, the formal concept definition may or may not be. 

The formal concept definition is usually regarded as part of a formal 
mathematical theory. In this way it has implications which may be 
deduced within the theory. Following Vinner & Tall (1980), we shall use 
the term potential conflict factor to denote any part of the concept image 
or any implication of the concept definition which may conflict with 
another part or another implication. Within a consistent theory there 
should be no potential conflicts but it may happen that factors in different 
formal theories can cause conflict. For instance, in the theory of 
arithmetic of natural numbers (positive integers), subtraction when 
possible leads to a smaller answer. In the arithmetic of all integers this is 
no longer true, leading to a potential conflict between factors from 
different theories. Another example is given by the definition of a 
complex number x+iy as the ordered pair (x, y) of real numbers. If we 
identify the real number x with the complex number x+i0 then we 
introduce a possible conflict, for this identifies x and (x, 0) whilst set 
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theory distinguishes between the element x and the ordered pair (x, 0). 
Students may see no conflict here, especially when the identifications 
occur in different contexts. They simply use whichever convention is 
appropriate in the given circumstances. 

To create actual cognitive conflict it is necessary to evoke two 
mutually conflicting factors simultaneously in the mind of the individual. 
There is therefore the distinct possibility of a potential conflict between 
part of the concept image and an implication of the concept definition 
which never gives rise to cognitive conflict simply because the 
implications of the formal definition never become part of the 
individual’s concept image. 

It may well happen that a formal definition is given early on in a 
mathematics course but the examples and work which follows creates 
quite a different concept image in the individual students. For instance a 
formal definition of a function may be given is set-theoretic terms yet 
subsequent examples where functions are given by formulae and rules 
may create a concept image with these restrictions implicitly built in 
Vinner, (1980). In this paper we will shortly concentrate on concept 
images of infinite processes. 

§3 Measuring infinity 
At this juncture I pause briefly to mention the notion of measuring 
infinity, introduced in Tall (1980d), as opposed to cardinal infinity. 

It is possible to have an ordered field F containing the real numbers R 
such that certain elements α ∈ F satisfy 

 α > x for all x ∈ R. 
These elements are called (positive) infinite elements because they 
exceed all real numbers. Because F is a field we may add, subtract, 
multiply and divide such elements. If α is positive infinite, then 2α is an 
even larger positive element, –α is negative infinite and l/α, –1/α are 
positive and negative infinitesimals respectively. 

Examples of such fields are the hyperreal numbers of non-standard 
analysis (Robinson, 1966; Keisler, 1976a, 1976b) or the superreal 
numbers (Tall, 1979, 1980a, 1980c). In Tall (1980d) I showed that such 
systems extrapolate properties of measuring numbers rather than cardinal 
numbers. For instance, if we imagine a “point” to be infinitesimal in size, 
say d, then the (measuring) number of such points in a line of finite 
length l is the infinite number l/d. The number of such points in a line 
length 2l is 2l/d, which is an infinite number twice as big as l/d. I refer to 
Tall (1980d) for details. The purpose of mentioning this fact here is to 
demonstrate that cardinal infinity is not the only possible kind of infinity; 
another kind is possible with its own theory of arithmetic quite different 
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from the cardinal concept. There are others: +∞ and –∞ as idealised 
points adjoined to the real line, a single point at infinity giving the one 
point compactification of the line or plane, the line at infinity in the 
projective plane. All these kinds of infinity extrapolate various properties 
of finite experience. What usually happens is that the finite properties 
concerned are all inextricably intertwined and extrapolate to give an 
intuition of infinity which contains a variety of potentially conflicting 
factors. 

§4 Infinite processes 
In mathematics there are many different kinds of limiting process. There 
are continuous limit processes such as lim

x!a
f (x ) , the notion of continuity 

itself, the geometric limit of a chord as it approaches a tangent. Then 
there are discrete processes, including limits of sequences and series, 
decimal expansions, iterative processes for computing numbers or 
approximating geometrical shapes. Students meet many of these 
processes. In England they are usually introduced in an informal manner 
first, with a formal definition coming much later, if at all. (In the School 
Mathematics Project the formal definitions of limits of functions and 
sequences come at the very end of the course.) This means that a concept 
image is built up long before any formal concept definition is given. With 
such subtle concepts this is a sensible approach, it may be the only 
practical approach, but it does mean that certain implicit properties which 
are not part of the concept definition become part of the concept image. 

In an investigation Schwarzenberger and Tall (1978) noted that a large 
number of good mathematicians entering university assumed that if 
sn→s, then s is never equal to s. As one put it 

“sn → s means sn gets close to s as n gets large, but does not actually 
reach s until infinity … Infinity is an imaginary concept invented by 
mathematicians, useful in describing limits etc.” 

Here the concept image includes a fact (sn ≠ s) which is not part of the 
formal concept definition. This fact often survives after long exposure to 
formal mathematics. In a seminar which I held with final year B. Ed. 
honours students (shortly to become mathematics teachers), all four 
students concerned insisted that sn is never equal to s. 

Fischbein (1978, p. 68) reported an investigation with younger pupils 
(grades 8 and 9) in which two of the questions were: 

(i) Given a segment AB = 1m. Let us add to AB a segment BC = 1
2

m. 
Let us continue in the same way adding segments of 1

4
m, 1

8
m, etc. Will 

this process of adding segments come to an end? 
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A B C D

1m
1

2
m

1

4
m  

(ii) Let us consider question (i). What will be the sum of the segments 
AB+BC+CD+... etc. ? 

Out of 107 students, 84% thought the process in (i) would never end, 
14% thought it would. In (ii) only 6% thought the sum of the segments 
would be 2, 17% thought it would be less than 2 and 51% thought it 
would be infinity. Even before the limiting process had been discussed 
the concept image intuitively alights on the infinite nature of the process 
rather than the finite numerical limit. 

In a paper presented to ICME IV (Tall, 1980b) I reported a 
questionnaire on limiting processes for mathematics students arriving at 
university. These were good students (with A or B grades in mathematics 
A-level). They were asked: 

Did you use the notation dy
dx

= lim
!x"0

!y

!x
 at school? If your reply is ‘yes’, 

explain (if you can) what the following are: 
 δx, δy, dy

dx
, dx, dy, δ, d. 

These are not regular mathematics questions, but they give insight into 
the individual’s concept image. I was particularly interested in their 
interpretation of the meaning of dy which I classified to include 22 out of 
a total of 70 giving infinitesimal-type responses. Sixteen of these 
specifically mentioned “infinitesimal”, “infinitely small” or “smallest 
possible” quantities (the term “smallest” almost certainly used in a 
superlative, rather than mathematical, sense). The other six responded 
that I was the “limit of δy” which such comments as 

“dy is the limit as δy tends to zero”, 
 or 

“The only possible meaning I can attach to this is dx = lim
!x"0

!x  = 0.”. 

The latter responses once more underline the fact that many students tend 
to visualise a limit as a dynamic process rather than a numerical quantity. 

Other topics in the questionnaire show that the majority of students 
regard the limit as a dynamic process (Tall, 1980b). 

What effect do such processes have in developing a concept image of 
infinity? Fischbein (1978, p. 159) has asserted: 

“the natural concept of infinity is the concept of potential infinity, the 
only one which Aristotle admitted as meaningful and which was 
predominant until Cantor.” 
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As a primary intuition this may be so, but a process of teaching which 
regards the natural numbers as a well-known set N blurs the distinction 
between potential and actual infinity. In a questionnaire I asked a group 
of 42 final year students if the natural numbers existed as a coherent 
mathematical idea. All 42 responded in the affirmative. The next day I 
expressed my amazement that all of them had said ‘yes’ and asked if any 
of them were concerned with the difference between actual and potential 
infinity. We had a five minute discussion on the topic and at the end I 
asked those who felt if necessary to distinguish between potential and 
actual infinity to write ‘yes’ on a piece of paper, otherwise ‘no’. There 
were 42 no’s. None of the students felt there was an actual difference 
between the two. Modern set theory, with that all important set N, has 
retrained our intuition. Many university students go through a stage 
where they accept the actual infinity of a set but only a potential infinity 
of a process. 

At a less sophisticated level many young children still go through a 
period of distinguishing between potentially infinite and actually infinite 
sets. They realise at a young age that the process of counting is 
potentially infinite and its actual infinity cannot be realised. As we shall 
shortly demonstrate many students come to recognise potential infinity as 
a reality but actual infinity as a mathematical fiction. This comes about, 
not through cardinal consideration but through limiting processes, for 
instance through lim

n!"
sn , lim

x!"
f (x ) , lim

x!a
f (x ) = ". 

As an example I returned to a questionnaire given to students in 1977 
which considerd infinity in the context of limiting processes. 
Mathematics students were asked whether they had met the concept of 
the limit of a sequence sl, s2,…, sn,… in school. They were asked to find 
the following limits (if they exist)) : 

 lim
n!"

1

2( )
n , lim

n!"

n
2

2n
2
+1

, 

 
  

lim
n!"

1+
9

10
+
9

100
+…+

9

10
n

# 

$ 
% 

& 

' 
( , 

  

lim
n!"

1+
1

2
+
1

3
+…+

1

n

# 

$ 
% 

& 

' 
( . 

Next they were asked to give the definition of the limit of a sequence (if 
they could) and then to say whether 0 !

˙ 
9  (nought point nine recurring) was 

equal to one or less than one. Finally there came the questions which 
concern us now: 

(a) Is “∞” a real number? 
(b) What is it? 
(c) Explain the reason behind your answers for (a) and (b). 

The sequence of questions effectively prevents a cardinal response from 
being evoked. There were 36 replies and 17 gave correct responses to 
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calculating the four limits (0, 12 , 2, ∞, or no limit, respectively). (Only 
one of the 17 claimed not to have seen the definition of the limit of a 
sequence either formally or informally.) Of these 17, who ostensibly can 
operate the notion of limit with success in the examples, what was their 
evoked concept image of infinity? Only two thought infinity was a real 
number. One gave no reason, simply stating 

“[It] is a bigger number than the biggest one you can think of.” 

The other said 

“∞ ∈ R because x

x=0

!  = ∞, x ∈ R.” 

(He had written 
x=0

!

" , but scrubbed out the ∞ over the Σ sign.) The rest 

(who said infinity was not a real number) gave a variety of responses, 

“it is an idea useful in seeing the trends in various functions and 
series.” 

“a kind of limit.” 

“a figment of man’s imagination to put a value to a number which does 
not exist. It must not be confused with an imaginary number (i.e. 
complex).” 

“it is a concept which illustrates the fact that there is no top limit to the 
size of a number.” 

“it is a symbol used to denote the ‘limit’ of a sequence sn if 
“!M > 0 "n0 (M ): sn > M !n > n0 .” 

“I regard ∞ not as a number at all, but as a concept, it is used to 
indicate that we have found something beyond our understanding 
because of its sheer size.” 

“A concept invented in order to give an end point to the real numbers, 
beyond which there are no more real numbers.” 

“ ∞ = lim (1, 2, 3, 4, 5, … ).” 

In the context of limits, the evoked concept of infinity was a limiting 
concept or something large, beyond understanding. Although we could 
read cardinal implications into certain responses, never was one-one 
correspondence explicitly evoked. Why should it be: it has never been 
taught! 

The reasons given for this evoked concept tended to concentrate on 
why was not a real number: 
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“ ∞ cannot be either written as a decimal or represented as a length. It 
therefore does not qualify under the given definition of a real number.” 

“If ∞ is a real number it mucks up behaviour of some axioms adds 
other problems (odd or even?)..” 

“It is not real because it has no fixed value you can’t say ∞ = x+1 
where x is a real number.” 

“ ∞ has no multiplicative inverse since l/∞ is taken to be 0. ∞x1/∞ is 
thus 0 instead of 1. It’s an odd quantity to work with, multiplying it by 
anything or adding anything to it is pretty meaningless.” 

“If ∞ is a real number you could add 1 (or more for that matter) onto it 
and ‘create’ something larger than infinity, which is a contradiction. 
Perhaps it can be looked upon as a kind of limit, for no matter how 
many real numbers you add together, you never arrive at ∞, you only 
approach it.” 

In these responses I detect a positive effect of teaching: students are often 
taught that arithmetic with infinity leads to contradictions. On the other 
hand there are intimations of the potential nature of the infinite process, 
of the unapproachable size of infinity. Nowhere is there any mention of 
cardinal infinity. 

In all of the above examples there is the suggestion of a single 
unattainable positive infinity. However there is a secondary intuition 
which allows different sizes of infinity by considering the rate at which 
infinity is approached. 

As n tends to infinity, so do n5 and 2n, but 2n tends to infinity “faster” 
than n5. This is a well known mathematical result (“for x>1, xn tends to 
infinity faster than any power of n”). 

With a class of 20 average university students (grades C and D at A-
level mathematics) we computed various limits on hand calculators. An 
interesting example is sn = n5/(1.1)n which increases to begin with, 
getting very large as n increases, then after n=80 or so its behaviour 
changes and for much larger n it tends to zero. On a written assignment 
students were asked to compute various limits, including 

 n2/(n2 + 1) and n5/(1.1)n. 
The students had been taught to write the first as 

 n
2

n
2
+ 1

=
1

1+1 / n
2
!

1

1+ 0
= 1. 

One student responded 

 n
2

n
2
+ 1

!
"

"
= 1. 
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I interviewed her and pointed out that a similar “computation” would give 

  n
5

(1!1)
n
"

#

#
= 1. 

She replied: 

“no it wouldn’t, because in this case the denominator is a bigger 
infinity, and the result is zero.” 

In this case she was very close to extrapolating properties which lead 
formally to a kind of non-standard analysis, with different infinities as in 
Tall (1980d), though in the current mathematical paradigm of cardinal 
number her response would likely be rejected. 

Historically it is interesting to note that Leibniz had an intuition of 
various orders of infinity, suggested by the kinds of functions for which 
he computed derivatives. He said that as the earth is infinite with respect 
to a ball, so the distance of the fixed stars is doubly infinite with respect 
to the ball (Leibniz, ed Gerhard, 1849–63, pp. 350, 389) quoted in Boyer, 
(1949, p. 212). Meanwhile Leibniz rejected actual cardinal infinity to 
avoid the conflicts inherent in the concept as earlier enunciated by 
Galileo. How times change; now we accept cardinal infinity of Cantor 
and reject the measuring infinity of Leibniz, despite the non-standard 
theory of Robinson (1966) and his school. 

If we look at the intuitions of children, we still find notions of 
measuring infinity. For instance in Fischbein et al. (1979, p. 75) the sum 
of 

  
1+

1

2 +
1

4 +
1

8 +…. is given as “s = 2 – 1
!

  because there is no end to the 
sum of segments.” 

Likewise measuring aspects appear where infinity is not evoked 
explicitly. For example in Fischbein et al. (1979, p. 73), a pupil justifying 
a one-one correspondence between a line and a line-segment asserted: 

“The line has no magnitude and therefore it is possible to establish a 
correspondence between a big point of the line and a small point of the 
line segment.” 

How we distort the intuitions of the young by viewing them through the 
spectacles of a cardinal paradigm! And in saying that I realise how a 
“measuring infinity paradigm” is another form of distortion, though it has 
certain intuitive properties. (Non-standard analysis has an axiom which 
says that any “elementary” property remains true in the extended theory. 
Therefore extrapolating “elementary” properties leads to true intuitions.) 
Following Lakatos (1978), who speaks on behalf of incomplete theories 
in history, one should make a plea that the intuitions of student should be 
respected whether they fit with an accepted formal theory or not. Who 
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knows, a later mathematician may canonise such an intuition with a new 
formal theory! 

§ 5 Conclusions 
In the previous section various aspects of infinity have been considered. 
Although a primary intuition of potential infinity exists in many children 
I postulate that modern mathematics at university promotes secondary 
intuitions of actual infinity of sets contrasting with potential infinity of 
limiting processes. In the first place limiting processes support the notion 
of a single unattainable (positive) infinity, but further consideration of the 
rate of approach to infinity can lead to the intuition of different infinities. 

The latter involves a complete arithmetic of infinities and 
infinitesimals as in Tall, (1980d). This has different properties from 
cardinal infinity and so conflicting intuitions may develop. There may in 
addition be other intuitions of infinity not fitting into either of these 
theories. 

Thus the concept of infinity which varies from one individual to 
another need not be globally coherent and may contain potential conflict 
factors. As Fischbein has observed, the individual need not be aware of 
these factors unless they are evoked simultaneously in a context seeking 
overall consistency. 

I contend that these factors occurring in the concept of infinity are a 
typical case of intuition in particularly extenuating circumstances. They 
reveal the amalgam of local mental processes giving an intuition by using 
current cognitive structure in a manner which extrapolates previous 
experience without a complete intervening logical process. 
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