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Intuitive infinitesimals

Intuitive approaches to the notion of the limit of a function
“ lim

x→a
f (x) = l” or “ f(x)→ l as x → a”

are usually interpreted in a dynamic sense
“ f(x) gets close to l as x gets close to a.”

The variable quantity x moves closer to a and causes the variable quantity
f(x) to get closer to l. As an implied corollary resulting from the examples
they do, students often believe (see [5]) that f(x) can never actually reach
l. For l = 0 this gives a pre-conceptual notion of “very small” or
“infinitely small.” A limit is often interpreted as a never-ending process
of getting close to the value of l rather than the value of l itself.

For instance, using the Leibnizian notation, students with a
background of intuitive limiting processes might interpret dx as

lim
δx→0

δx .

The latter is not thought of as zero, but the process of getting
arbitrarily close to zero.

In the same way
lim
n→∞

an

is usually regarded as a never-ending process, so that
  0 ⋅ 999K9K

is regarded as less than 1 because the process never gets there.
The extent of these phenomena will depend on the experiences of the

students. In a questionnaire for mathematics students arriving at Warwick
University, they were asked whether they had met the notation

dy

dx
= lim

δx→0

δy

δx
and, if so, they were asked the meaning of the constituent parts δx, δy, dx,
dy. Of course some would have been told that dx and dy have no meaning

in themselves, only in the composite symbol 
dy

dx
, a few others may have

been told that dx is any real number and dy = ′f (x)dx . Out of 60
students completing the questionnaire I classified their interpretation of
dy as follows:
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dy has no meaning by itself...........................................15
dy means “with respect to y” (as in integration).................... 712
dy is the differential of y ............................................... 71

2

dy is an infinitesimal increase in y...................................111
2

dy is a “very small” or “smallest possible” increase in y .......... 41
2

dy is the limit of δy as it gets small................................... 6

No response............................................................. 8

The first three categories total 30 (including 1
2 ’s which represent students

giving more than one answer) which might be considered “orthodox” the
next three categories total 22 which contain pre-conceptual infinitesimal
notions.

The case of   0 ⋅ 999K9K has been reported on several occasions
(including [5], [10]). Out of 36 first year university students, 14 thought
0 ⋅ 9̇ = 1, 20 thought 0 ⋅ 9̇ < 1 and 2 hedged their bets.

Many reasons given incorporated infinitesimal arguments:

0 ⋅ 9̇  is just less than 1 but the difference between it and 1 is infinitely
small.

I think 0 ⋅ 9̇  = l because we could say “0 ⋅ 9̇  reaches one at infinity”
although infinity does not actually exist, we use this way of thinking in
calculus, limits, etc.

Such intuitive notions of infinitesimals are reinforced in the English sixth
form by occasional use of notations like

lim
x→1−

1
x −1

= −∞

where 1– may then be interpreted as being infinitesimally smaller than 1
and –∞ is “negative infinity”.

A further corollary of this type of thinking is that the pictorial number
line may be considered to include infinitesimals and infinite elements.

Of course, such infinitesimal notions as these are not at this stage part
of a coherent theory and may lead to conflicting conclusions. If one first
notes that   13 = 0 ⋅333K, then asks the meaning of   0 ⋅ 999K, a student who
earlier had stated that 0 ⋅ 9̇ < 1 might now assert that 0 ⋅ 9̇ = 1. (Fourteen
of the twenty students in the previously mentioned investigation reacted
in this way.)

The notion of relative rates of tending to infinity (for instance 2n tends
to infinity faster than n2) can lead to the notion of relative sizes of
infinity, and deductions such as

lim
n→∞

n2

2n = “infinity”
“a bigger infinity”

= 0 .

Though such notions are normally expunged in formal analysis courses
they often remain as intuitive techniques.
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In many ways, therefore, limiting processes in analysis lead to a 
cognitive feeling for intuitive infinitesimals.

Historical considerations

The notion of infinitesimal as a variable quantity which approaches zero 
has a very respectable antecedent in the work of Cauchy in the first half 
of the nineteenth century. This was essentially banished from formal 
mathematics by the ε –δ techniques of Weierstrass in the second half of 
the century. Infinitesimals did not die. Hilbert used then as late as the 
1920s and applied mathematicians continued to find them useful. In the 
1960s Robinson [4] legitimised their full use in analysis through logical 
constructions, but the mathematical community at large failed to warm to 
them.

Keisler’s experiment teaching calculus with infinitesimals

An approach to teaching introductory calculus with infinitesimals was 
developed by Keisler [2] based on a teaching experiment during 1973–4. 
Infinitesimals were handled in a gentle axiomatic way and a 
supplementary text for supervisors [3] demonstrated a viable approach to 
Robinson’s non-standard analysis using set theory instead of first-order 
logic. Comparing students following Keisler’s approach with a control 
group, Sullivan [6] demonstrated that those using infinitesimal techniques 
subsequently had a better appreciation of ε –δ techniques as well.

Meanwhile, Bishop [1] fiercely criticised Keisler’s text for adopting 
an axiomatic approach when it is not clear to the reader that a system 
exists which satisfies the given axioms. Although Bishop’s review adopts 
an extreme viewpoint, the benefits reported by Sullivan have failed to 
convince the vast majority of mathematicians to switch to infinitesimal 
techniques.

Existence of infinitesimals

When we speak of “existence”, we may do so from several different 
points of view. Bishop’s criticism is directed at the fact that the axioms of 
non-standard analysis assert that certain concepts exist which cannot be 
constructed in any genuine sense. For instance we take (an) to be the 
sequence of decimal places in the expansion of π then a1=3,  a2=1, a3=4, 
and so on. Non-standard analysis not only asserts that infinite hyper-
integers exist, but that aH is defined for each positive infinite hyperinteger 
H. One may even prove that aH is an ordinary integer between 0 and 9, 
yet no-one can give a precise value of aH (which is only reasonable 
because H is not precisely specified).
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The students in Keisler’s experimental programme were not
concerned with existence in this sense, but with what I shall term
cognitive existence, that the concepts become part of an acceptable
coherent structure in their mind. As we shall see, belief in cognitive
existence is improved by coherent use of the concepts.

A smaller system with infinitesimals suitable for the
calculus of Leibniz

My sympathies very much lie with Robinson and Keisler. Not only have
infinitesimals played a large part in the historical development of the
calculus, they still occur intuitively in standard analysis. I therefore
developed a simpler system of calculus with infinitesimals published in
[8], which proved to be sufficient to handle the calculus of Leibniz [7].
Briefly one adjoins a single infinitesimal ε to the real numbers (together
with the necessary algebraic expressions in ε), giving the system of
superreal numbers. The algebraic expressions concerned include power
series in ε and allow the use of infinitesimal techniques for the calculus of
analytic functions. The system is nowhere near as powerful as
Robinson’s, which can handle all functions, but it does not require any
logical techniques, only straightforward algebra. There is also an allied
geometrical theory which allows one to view graphs using infinite
magnification factors which give real pictures of infinitesimal
phenomena. More important, there is a correspondence between functions
f and their values f(ε) at x=ε, giving a correspondence between functions
which tend to zero and infinitesimals, recalling the historical precedent of
Cauchy, [8].

In the Spring of 1980 this superreal theory was used as an auxiliary
introduction to non-standard analysis (as in [3]) for third year honours
university mathematics students with two years of standard analysis. The
reasons behind the superreal preface were threefold:

1) pedagogical: an initial approach to infinitesimals given

2) logical:

3) historical:

them cognitive existence in complementary 
algebraic and geometric terms,

no first order logic is necessary,

the system has certain properties in common 
with the calculus of Leibniz.

In the course the superreals were not explicitly constructed (though they
easily could have been). The students were just introduced to them as
power series which could be manipulated algebraically and visualised
geometrically. The hyperreals of the non-standard part of the course, on
the other hand, were first described axiomatically, then constructed using
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Zorn’s Lemma as in [3]. Immediately following the construction, the
students were asked to respond to the following question:

Do you consider the following exist as coherent mathematical ideas?
Respond as follows:

1. definitely yes 2. fairly sure 3. Neutral/no opinion
4. confused 5. fairly sure not 6. definitely not.

The responses were as follows:

N=42 1 2 3 4 5 6

natural numbers 40 2 0 0 0 0

real numbers 39 3 0 0 0 0

complex numbers 32 8 1 0 1 0

infinitesimals 23 9 8 0 2 0

supperreal numbers 18 12 8 2 2 0

hyperreal numbers 15 7 11 6 3 0

Notice that more believe in infinitesimals per se than in either
infinitesimal system and more believe in superreals than hyperreals,
though the difference was not very significant. The students lacked the
sophistication to notice that the existence of the superreals had not been
shown by an explicit construction. They had little or no previous
experience of Zorn’s Lemma and the subtleties raised by Bishop escaped
the majority.

Five weeks later at the end of the course, in response to the same
question, 46 students responded:

N=46 1 2 3 4 5 6

natural numbers 433 0 0 0 0

real numbers 39 5 1 0 0 0

supperreal numbers 27 134 2 0 0

hyperreal numbers 15 205 4 2 0

Familiarity had warmed their feelings towards the systems with
infinitesimals. Although 11 out of 46 had studied the construction of the
hyperreals at length, this warming cannot be ascribed to logical deduction
alone. A small number remained cognitively uncertain of the
infinitesimal systems (categories 3–6) but the majority were at least fairly
sure (categories 1, 2).

Another questionnaire showed that only 7 out of 46 considered it a
flaw that the superreals were not formally constructed, only 10 were
positively unhappy with the use of Zorn’s Lemma in the construction of
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hyperreals, though 22 felt that a construction was essential. With the
lowering of cognitive belief in existence, a construction becomes more
necessary.

An essential difference between these students and those in Keisler’s
experiment was that these have extensive experience in ε–δ analysis.
When several students, representing a cross-section of all abilities, were
interviewed in depth after the course, it became clear that their heavy
investment in ε–δ analysis made them have a high regard for it, even
though it still presented them with technical difficulties.

The vast majority of university teachers have a similar investment, so
a cultural resistance to non-standard analysis is only natural. In addition
to Keisler’s move to replace logical notation by a formulation more
acceptable to mathematicians, a factor which may help the reconciliation
of ε−δ analysis and infinitesimal techniques is likely to be the Cauchy-
like notion of the correspondence between functions which tend to zero
and infinitesimals. As we have seen, the limits of such functions in
standard analysis already contain the seeds of intuitive infinitesimal
concepts.
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