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1. Introduction

The differential triangle of Leibniz for a real function f is found by taking an
increment dx in the variable x, finding the increment dy in y=f(x) and drawing
the ‘triangle’, in Fig 1. Here ds is increment in the length of the graph, where

ds2 = dx2 +dy2

and the derivative of f is

 f (x) =
dy
dx

The reader may already feel
uneasy about the preceding
description. Surely an accurate
picture is as in Fig. 2. Here dy is
the increment measured up to the
tangent, not to the graph, and if
ds2 = d x2 +d y2, then ds is the
increment along the tangent, not
along the graph. Of course, if dx
is extremely small, then Fig. 2
approximates to Fig. 1. Leibniz
imagined dx to be an infinitesimal,
and that Fig. 1 was accurate
within infinitesimals of higher
order. In the nineteenth century
the arrival of the analysis of
Weierstrass and his school banished infinitesimals from mathematics. Pictures
like Fig. 1 and geometric interpretations after the style of Leibniz were also
banned.

This article will give a simple algebraic description which accords with
Leibniz’s theory.

The first such modern approach was through the epoch-making work of
Robinson [1]. That requires the use of first-order logic and an axiom almost
as strong as the axiom of choice. Here a less powerful version is used which is

FIGURE  1.

FIGURE 2.
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still strong enough to handle the calculus of analytic functions. Its advantage is
that everything is done with straightforward algebra which has a geometric
interpretation. The algebra gives a simple set-theoretic description of a
function which describes the intuitive notion of looking through a microscope
with ‘infinite magnification’. Looking through such a microscope, we see that
an infinitesimal portion of the graph looks like a straight line and the
magnified picture reveals the differential triangle of Leibniz. In a
complementary manner there is also an algebraic description of ‘looking at a
graph at infinity’. This reveals that a graph with an asymptote looks the same
as the asymptote itself at infinite points.

For the convenience of the reader, we briefly discuss the notion of an
infinitesimal in §2 and describe the superreal numbers in §3, already
previously explained in [21 and [31. We then get down to the set-theoretic
ideas of microscopes, windows and telescopes in §§4, 5, 6. The differential
triangle appears in §7 and applications in integration and length of curves
appear in §§8, 9. Asymptotes are viewed through windows in §10.

2. What is an infinitesimal?

A positive infinitesimal may be thought of as a quantity greater than zero yet
smaller than any positive real number. (Similarly a negative infinitesimal is
smaller than zero but larger than any negative real number.) How can that
be? Surely there is something inconsistent about the definition of a positive
infinitesimal. If  were such a quantity, then 1

2  is also positive but smaller
than . In the late nineteenth century such an argument was put forward to
demonstrate that infinitesimals cannot exist. The repercussions of this
viewpoint still reverberate in our modern mathematical culture, leading to the
rejection of the infinitesimal idea. But this is a misconception of the possible
nature of an infinitesimal.

Returning to the first sentence of this section, we see that a positive
infinitesimal  satisfies

0 <  < a for every positive real number a.

If such an  were a real number, then indeed 1
2  is positive and putting a =

1
2  yields a contradiction. There is a way out of the dilemma: it is simply that

an infinitesimal is not a real number.
We may conceive of an infinitesimal by supposing that we have an

ordered field F such that F contains the real numbers R  as a subfield. A
positive infinitesimal  is then an element of F which is not in R satisfying

0 <  < a for all positive a  R.

In [3] it is shown how the field F=R(x) of rational expressions

( x) =
a0 + a1 +K+anx n

b0 + b1 +K+bm xm  (where  ai, bj  R and bm  0.)
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in an indeterminate x may be considered as such an ordered field. Briefly, if 
(x), (x)  R(x), then we define

(x) < (x)

to mean:

for some positive real number k,
(t) < (t) for all t  R  such that 0 < t < k.

Geometrically this is equivalent to drawing the graphs of (x) and (x), and
noting that the graph of  is below that of  over some open interval (0, k).
For instance, with such a definition we find

x2 < x

because, taking k = 1, when t  R and 0 < t < l then t2 < t (Fig. 3).

FIGURE 3.

It is essential to check that this definition of order on R(x) satisfies the axioms
of an ordered field. In particular the order axioms are:

(i)  <  ,  <    < .

(ii) Given ,   R(x), then precisely one of the following holds:
 <  ,  <  or  = .

(iii) If  <  ,  <  then +  < + .

(iv) If  <  , 0 <  then  < .

It is a routine matter to show that these axioms are satisfied and that R is an
ordered subfield of R(x).
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If a is a positive real number, then the graph of y = a is a horizontal line
above the horizontal axis and, for 0 < t < a, the graph of y = x is below this
line (Fig. 4).

FIGURE 4.

Using the given definition of order on R(x), this means that x < a for any
positive a  R. Clearly 0 < x using the same definition; thus

0<x<a for all a  R such that a > 0,

and this means that x is a positive infinitesimal. But note that x is not a real
number! The field F= R(x) contains the real numbers R and an infinitesimal
x  F where x  R.

3. The superreal numbers 

Now that we see that infinitesimals can exist, in the shape of rational
functions, we move on to a different system which will prove to be precisely
what we need in the calculus.

To be able to use infinitesimals geometrically in the calculus, we need to
seek a description of an extended number line that includes not only the usual
real numbers, but also infinitesimal points as well. A positive infinitesimal, if
we could conceive such a thing, would be a point to the right of the origin,
yet to the left of any positive real number. Of course we cannot draw an
infinitesimal to the same scale as finite numbers and get a picture in which it is
distinguishable from the origin, but it is not beyond the realms of imagination
to conceive of such a phenomenon.

We put geometrical considerations aside temporarily and begin with
algebra. If we wished to handle a positive infinitesimal  algebraically, then we
should need to add and subtract expressions involving , and form products
and quotients, which means that we would need to build up rational
expressions like

(3 2 + 2  + 17)/(4 5– 3).

Even these are not sufficient for the calculus; for instance, the sine of  would
require a power series
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sin  = – 3/3! + 5/5! - ....

With such applications in mind, the superreal numbers  are defined to
consist of formal power series in an unspecified symbol , of the form

a-m -m + ... + a-1 –1 + a0 + al  + ... + an n + ....

where the coefficients ar are any real numbers. We include a finite number of
negative powers of  to allow for the formation of multiplicative inverses, so
that, when these expressions are added term-by-term and multiplied in the
usual way for power series, it may be shown that  is a field (see [2]). The
reader should also note that we do not concern ourselves with convergence,
and that there is not intended to be any restriction on the values of the real
coefficients ar.

Now we specify an order on these symbols in such a way that  is an
ordered field and  is an infinitesimal. This may be done by writing two
elements  and , in  as

= an
n=k

n and = bn
n=l

n (where k, l  Z and an, bn   R);

then either  = , or aq  b q for some q. In the latter case, let r be the
smallest integer such that ar  br, and define

 < ,  ar < br.

For instance,

1000  < 3–5 2,

since a0 = 0 is less than b0 = 3; and

1/  + 7 +  + 2 + 3 + . . . < 1/  + 7 + 3  – 257 2,

since a–1 = b–1 = 1, a0 = b0 = 7, but a1 = 1 is less than b1 = 3.
It is a routine matter to verify that  is an ordered field (which means

checking axioms (i)–(iv) of §2). We shall freely use >  instead of < , and
such equivalents as  for “  <  or = ”.

Using this definition, we have

0 <  < a for every positive real number a,

so (using the definition of §2)  is a positive infinitesimal in .
Just as  is ‘very small’, so terms involving 1/  are ‘very large’. Formally,

an element  in  is said to be positive infinite if

a <  for all a  R

and negative infinite if

 < a for all a  R.

For instance, 1/  – 10100 is positive infinite and –1/  + 10100 is negative
infinite.
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On the other hand, if a <  < b for some a,b  R, then  is said to be
finite.

4. Infinitesimal microscopes, windows and infinite telescopes

There are severe practical problems in attempting to draw superreal points as
additional points on the normal real number line. Positive infinite points are
too far off to the right to be drawn on a finite piece of paper, and negative
infinite points too far off to the left. Even though we might make an attempt
to represent a finite point

 = a0 + a1  + a2 2 + … ,

it would look no different from the real number a0 because the remainder of
the expansion is infinitesimal. We call the first coefficient, a0 of a finite
superreal  the standard part of  and denote it by st . It is easily
manipulated algebraically to obtain

st(  + ) = st  + st , st(a ) = st a st ,

and subtraction and division follow exactly the same pattern. (Technically st is
a ring homomorphism from the ring of finite elements onto R with kernel I,
the set of infinitesimals.)

Normal scale pictures, seeing only the standard parts of finite superreals
lose all the infinitesimal detail and faraway infinite structure. To reveal these
subtleties, we use the superreal map given by

µ(x) = (x— )/ .

This moves the point  to the origin and multiplies by a scale factor 1/ . By
careful choice of  and  we can see details which are not visible in ordinary
pictures.

EXAMPLE 1. Let  = 2,  =  then we may compute µ(x) for various
superreal values of x to get results such as

µ(3) = 1/ ,  µ(2 + 1
2  + 27 3) = 1

2  + 27 2,

µ(2 + 2 –3 4) = 2—3 3,  µ(2 + 2  + 2) = 2 + .
Now µ(3) is infinite, but the other images mentioned are all finite. In fact, 

µ(x) is finite precisely when x = 2 +  where  is infinitesimal, because

µ(2 + a1  + a2 2 + ...) = a1 + a2  + … .

The map µ magnifies all distances from the point 2 by a factor 1/ , and this 
scale factor is infinite. It has the effect of expanding the scale to such an 
extent that points, such as 3, which are a finite non-zero distance away from 2 
are mapped way off to infinity, whilst points an infinitesimal distance away 
from 2 are spread out to cover the whole finite part of the number line. If we 
draw what we can, we get a picture like Fig. 5.
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FIGURE 5.

A useful notational device is to drop the symbol µ in the image. This is a
regular map-making technique, whereby a place on a map is denoted by the
name of the actual location. In the context of the superreals the device has a
great liberating effect; it enables us to imagine that µ is a magnification by the
infinite factor 1/ , revealing the infinitesimal detail near the point 2. Of course,
the integer points –1, –2, … on the upper line in Fig. 5 are also the images
µ(2– ), µ(2), µ(2+ ), µ(2+2 ), …so we must rename these as well. The result
is Fig. 6.

FIGURE 6.

We have also intimated in the diagram that 2 + 2  – 3 4 is to the left of 2 +
2 , and that 2 + 2  + 2 is to the right. In a practical picture we find that the
magnification by the factor 1/  is insufficient to reveal the distinction between
these points, because the differences are ‘higher order infinitesimals’. To
reveal these more subtle details we will require an even greater magnification.

The description of the various magnifications possible is greatly facilitated
by introducing a new concept, the order of a superreal number (not to be
confused with the order relation ‘<’). The order o( ) of a non-zero superreal
number  is the suffix of the first non-zero coefficient in the expression

 = ak k + ak+1 k + … ,
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namely (supposing ak  0)

o( ) = k.

For instance,

o( ) = 1, o( 2 + 17 4) = 2, o( –9 + 3 + ) = –9.

(The order of zero, o(0), is not defined in this way, though it is often formally
defined to be + . Technically, the order is called a valuation because it has
the properties

(i) o( ) = o( )o( ),

(ii) o(  + )  min{o( ), o( )}.

These properties hold even for o(0), provided that the usual arithmetic 
conventions are observed for operating with + .)

Using this definition, infinitesimals are those elements of strictly positive 
order, whilst infinite elements are those with strictly negative order Elements 
of order zero are simply finite elements with non-zero standard part.

We can now grade superreal numbers into relative orders of size; for each 
positive integer n we say that  is an nth order infinitesimal if o( ) = n, and 
an nth order infinite element if o( ) = –n. For instance, 3 + 2 4 is a third 
order infinitesimal and –9 + 3 +  is a ninth order infinite element.

If o( ) = n, then the image of x = a +  under the map µ mentioned 
earlier is finite if

µ(x)= /

has non-negative order. But

o( / ) = o( )–o( )

so o( / ) is non-negative precisely when

o( )  n.

In a practical drawing of the magnification µ, we can therefore only draw the 
images of points in the set

I( ,n) = { +    | o( )  n}.

At the same time we can only draw the standard parts of the image points. 
With these practical limitations in mind we reach the central concept in the 
pictorial representation of superreal numbers:

DEFINITION. For a positive superreal  of order n and any superreal  the 
optical -lens aimed at  is the map  : I( , n)  given by

 (x) = st((x— )/ ).

(In this definition the choice of  is restricted to positive values, because
negative ones give the same pictures, but with the order reversed as a mirror
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image.) The domain I( , n) of  , is called the field of view. It is an interval,
with centre , consisting of all the superreal points which differ from  by an
element of order at least n. If n = 1, as in Example 1, then the field of view is
precisely the set of superreals infinitesimally close to ; but we have the
option of choosing n to be any integer. If n is positive, then we call the optical
-lens an infinitesimal microscope of order n, if n is zero we call it a window,

and if n = –m is negative, it is termed an infinite telescope of order m. (The
term “microscope” was introduced into non-standard analysis by Stroyan
(see, for example, [4]). However, the original definition did not include taking
standard parts, and the term “telescope” was used by Stroyan where we
would use the terminology “window pointed at an infinite element ”.)

The flexibility of choice of  and  allows us to visualise a whole variety of
different situations. Not only may we expand an infinitesimal field of view by
choosing o( )= 1, we may also look at higher order detail as well. On the
other hand, by choosing  or  infinite, we may view infinite points through
microscopes, windows or telescopes, as appropriate.

The action of a -lens expands or contracts the field of view to the whole
of the real line; the taking of standard parts loses detail of higher order.
Meanwhile details of lower order are outside the field of view and cannot be
seen either! In this way a microscope, window or telescope concentrates
precisely on the details of chosen order n in the field of view.

In this process the order of  matters more than the particular choice of
itself, for it is the order that determines the field of view. Were we to use
another positive element  of order n, then we would have the same field of
view I( , n) and the image of  +  in this field would be

(x) = st((x– )/ ).

But

( + ) = st( / ).

= st(( )/( ))

st( / )st( / )

= ( + )

where  = st( / ). Now  and  are both positive and of the same order, so
/  is positive and of order zero, which means that  is a strictly positive real

number. Thus varying the positive scale factor 1/ , whilst keeping the order
of  constant, only has the effect of varying the image by a positive real scale
factor.

At the same time, if we were to look through a -lens aimed at another
point a + 0 in the same field of view, then the image we would get would be

st ((x– – 0)/ ) = st ((x– )/ ) – 
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where  is the real number st( 0/ ). This is simply a translation of the -lens
aimed at , where now the image of + 0 is the origin instead of the image
of .

Thus by varying the positive n th order element  and the element
 within the field of view, we obtain the usual devices of changing the scale

and shifting the origin in a diagram.
Since the element  plays a non-essential role beyond determining the

order and the real scale factor, we shall often omit the suffix in the symbol 
and simply refer to the lens  of order n  (or microscope, window or
telescope, as appropriate). To simplify matters it is usually convenient to take
= n.

These techniques extend easily to looking at configurations in the superreal
plane; we simply apply the scale factor to each coordinate.

DEFINITION. An nth order optical lens aimed at ( , ) in the superreal plane
is a map  given by the formula

((x, y)) = (st ((x– )/ ), st ((y– )/ ))

where  is a positive superreal of order n.

The domain of  is the set of superreal points

D = {( + , + ) 2 | o( )  n, o( )  },

and the range is the whole of the real plane. The domain D is again called the
field of view; it consists of all points in the superreal plane whose coordinates
differ from those of ( , ) by elements of order at least n.

We can rephrase this latter condition in a more convenient manner by
extending the usual distance function to the superreal plane; defining the
distance from (x, y) to ( , ) to be

{(x– )2+(y– )2}

then it is a relatively simple matter to show that D is the set of points whose
distance from ( , ) is of order at least .

To be able to do this, however, we must first of all check that it is actually
possible to take the square root required in the distance function, because not
all positive superreals have a square root. For instance, a square root of 
would satisfy 2= , so

o( ) = o( 2) = o( ) + o( ),

which would require o( )) = 1
2 , contrary to the fact that the order of a non

zero superreal must be an integer. Although  has no superreal square root, a
non-zero element of the form 2 + 2 is clearly positive and of even order,
say 2m. Writing

2 + 2 = a2m 2m + a2m+1 2m+1 + … (where a2m is positive)

= a2m 2m(1+ )
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where  is infinitesimal, we may find a square root of 2 + 2 in the form

(a2m) m(1+ )1/2

where the root of 1 +  may be computed by using a binomial expansion. It
is then an easy matter to verify that the order of 2+ 2 is at least n precisely
when the orders of  and  are at least n. This is all we have to check
concerning our assertion about the field of view of an nth order optical lens.

The terminology for microscopes, windows and telescopes can be carried
over in the obvious manner to lenses looking at the superreal plane. They are
much more interesting than the one-dimensional case because they can be
used for looking at plane configurations; in particular, we will be able to put
graphs under an infinitesimal microscope.

5. Extending analytic functions

If we aim a microscope at a point ( , ) in the plane, then all the points in the
field of view will be infinitesimally close to ( , ). In particular, there will be
no other real points in view. To be able to look at graphs and to see
worthwhile pictures, we must first extend real functions to take on superreal
values.

The extension of functions with power series expansions is a
straightforward matter. A function given by

f(x+h) = a0 + a1h + … + anhn + …

for all real h satisfying |h| < R is said to be analytic for |h| < R, and for an
infinitesimal  we can define

f(x+ ) = a0 + a1  + … + an n + …

To compute f(x+ )  as a superreal power series in , we simply substitute

 = b1  + b2 2 + …

into the given expression.

For instance, we define

sin = – 3/3! + … + (–l)n 2n+1/(2n+1)! + …

and

ex+  = ex + ex /l! + … + ex n/n! + … .

The computation of sin  is carried out by computing each coefficient in turn:

sin  = (b1  + b2 2 + b3 3 + …) – (b1  + b2 2 + …)3/3! +...

= b1  + b2 2 + (b3–b13/6) 3 + …

Such a process is possible for any analytic function. In general, if f:D R is
analytic on an open interval D of the real numbers, which means that it has a
power series expansion
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f( x + h) = anhn

n= 0

  for  |h|< 1

at each x in D, then f extends to a function f: D#   where

D# 
= {x  | st x  D}

and

f( x + ) = an
n

n=0
  for x  D and  infinitesimal .

In this definition, f(x) = a0, so f(x+ ) – f(x) is infinitesimal.

This is reminiscent of the historical description of a continuous function, that
an infinitesimal change in the variable x only causes an infinitesimal change in
the value of f(x). Another way of saying the same thing is

st(f(x+ )) = f(x) for real x and infinitesimal .

Extensions are also possible infinitesimally close to poles of analytic functions.
Recall that a real function satisfying

f( x + h) = anhn

n= m

  for  0 <|h|< R

where a–m  0, is said to have a pole of order m  at x . For a non-zero
infinitesimal we can define

f( x + ) = an
n

n= m

.

A particularly simple case is a rational function f(x) = p(x)/q(x) which has poles
where q has zeros. We may compute f( ) for every superreal  except these
poles by simple substitution,

f( ) = p( )/q( ).

6. Looking at graphs

We are now in a position to look at graphs through lenses of various orders,
and we begin with a number of examples.

EXAMPLE 2. The graph of f(x)=1/x viewed through a first order microscope
pointed at (1,1). Here the field of view consists of all points infinitesimally
close to (1, 1). For any infinitesimal ,

f(1 + ) = / (1 + )

= 1 + 2
K

Hence for a point (1 + , 1/(1 + )) on the graph,
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(1 + ,1 / (1 + )) = (1 + ,1 + 2 +K)

= (st( / ),st(( +
2

…) / ))

= ( , )

where  = st( / ) is a real number. We can draw this as in Fig. 7, following
the established convention of dropping the symbol  from its image, so that
we can imagine  as a first order magnification of the points an infinitesimal
distance from (1, 1).

FIGURE 7.

Notice that the optical picture of an infinitesimal portion of the graph is a
straight line. This will shortly be seen to be typical.

EXAMPLE 3. The graph of f(x)=1/x viewed through an -microscope aimed at
an infinite point (1/ , 0) on the axis. For an infinitesimal , we have

f( 1 + ) = 1 / 1 +( )
= / (1 + )

= 2 + 3 2 …

So

(1 / + , f (1 / + )) = (1 / + , 2 + 3 2
K)

= (st( / ), st(( 2
+

3 2
…) / ))

= ( ,1)

where  is the real number st( / ).
The optical picture is as in Fig. 8, where the distances from (1/ , 0) to

(1/ , ) and from (1/ , ) to (1/  + , 1/(1/  + )) have been scaled up to the
finite lengths 1 and , respectively.
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FIGURE 8.

EXAMPLE 4. If we view part of the infinite portion of the graph of y=1/x 
through a window (say a -lens where =1, aimed at a point (1/ , 0) on 
the x-axis) then we find, for any finite ,

1
1

+ , f
1

+
 

 
 

 

 
 

 

 

 
 = 1

1
+ , 2 + 3 2 …

 

 
 

 
 

= (st( / 1), st(( 2
+

3 2
…) / 1)

= ( ,0),

where  is the real number st .
This means that, looking through a window at infinite points on the graph, 

we see the same picture as the x-axis. This too is typical, in the sense that 
looking at an asymptote at infinity is the same through a window as looking 
at the graph, as we shall see later.

EXAMPLE 5. As a case of looking through a telescope, let us view the graph 
of f(x) = 1/x through an optical (1/ )-telescope aimed at the origin. The field of 
view is the set of points (x, y) where x, y are both, at worst, infinite elements 
of first order. In particular, a point (a, 1/a) on the graph is in the field of view 
if

o(a)  1 and o(l/a)  –1,

so that

–l  o(a) < l.

For o(a) = –1 we have

a = a–1 –1 + a0 + a1  + … (where a–1  0),

Hence

1/a = (a–1 –1 + a0 + a1  + …)–1

= ( /a–1)(1 + (a0/a–1)  + (a1/a–1) 2 + …)–1
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= ( /a–1)(1 – (a0/a–1)  + )   where o( )  2.

Hence

(a, 1/a) = (st(a ), st( /a))

= (a–1, 0).

A similar calculation for o(a) = 1, where

a = a1  + … (where a1  0),

gives

(a, 1/a) = (0, 1/a1)

Finally for o(a) = 0 we have

a = a0 + a1  + … (where a0  0),

so

1/a = (a0 + a1  + …)–1

= (1/a0)(1 + (a1/a0)  + …)–1

= (1/a0) – (a1/a02)  + …

and

(a, 1/a) = (st(a ), st( /a)) = (0, 0).

Thus viewing the graph of f(x) = 1/x through a (1/ )-telescope pointed at (0, 0)
gives a picture as in Fig. 9. Notice that the whole of the finite part of the
graph is collapsed onto the origin whilst the (first order) infinite parts are
mapped onto the axes.

FIGURE 9.

It is sometimes convenient to use a lens which applies a different scale factor
to each coordinate. Such a lens aimed at a point ( , ) would be of the form

(x, y) = (st((x– )/ ), st((x– )/ )).
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When the factors  and  have different orders, the lens is said to be
astigmatic. An example where an astigmatic lens proves useful is in viewing
an elemental strip of infinitesimal width beneath the graph of an analytic
function. The height of such a strip over a point x is f(x) and (unless f(x) = 0)
we cannot choose a -lens whose field of view includes the finite height and
infinitesimal width, yet is able to magnify the width to visible proportions. The
solution is to use an infinite scaling factor on the x-coordinates whilst retaining
a finite scaling factor for the y-coordinates. For instance, if the width of the
strip is , we could take  =  and  = 1 in the formula for an astigmatic lens.
Then aiming the lens at, say, (x, 0), we find

(x, f(x)) = (0, f(x))

and, for a real number  between 0 and 1,

(x + , f(x + )) = (st , st(x + )) = ( , f(x)).
Thus the elemental strip has its width magnified by the infinite factor 1/

and, through the astigmatic lens, is seen to be a rectangle (Fig. 10).

FIGURE 10.

Now that we have flexible methods of looking at graphs of analytic functions,
let us consider the graph of a general power series, which may have a pole at
the origin,

f( x) = an xn

n= m

.

If this has positive radius of convergence R, then we have an analytic
function, defined for 0 < |x| < R in general, and for |x| < R when the origin is
not a pole. Of course, a power series like n!xn

n=0 only convergent for x =

0, which means that an expression like

1
x

+ n!xn

n=0

is not defined for any real x . But it is defined when x  is a non-zero
infinitesimal. (It is for this reason that we do not need to concern ourselves
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with questions of convergence of superreal expansions, thus avoiding
convergence technicalities in the definition of ; we can then handle superreal
extensions of all power series, not just those with positive real radius of
convergence.)

We may consider the graph of f for (at least) non-zero infinitesimal values
of x and view it through appropriately chosen lenses.

The line x =  meets the graph at the point ( , f( )), which may be seen by
aiming an -microscope at it. As f varies through all such power series we
therefore get a correspondence between the function

f( x) = an xn

n= m

and the supperreal number

f( ) = an
n

n= m

which is the ordinate where x =  meets the graph. (Technically, this is an 
isomorphism of ordered fields between the field of such functions and the 
superreal numbers.) If we restrict our attention to the subfield R(x) of rational 
functions described in §2, then we derive an isomorphism between R(x) and 
the subfield R( ) of  consisting of all rational expression in , in which the 
function y =  x corresponds to the infinitesimal superreal number .

The nineteenth century mathematician Cauchy defined an infinitesimal 
quantity as a variable whose numerical value decreases indefinitely in such a 
way as to converge to zero. He therefore visualised an infinitesimal as a 
function which converges to zero at the origin. The value of the modern 
definition is that an infinitesimal can be visualised now as a point on the 
extended superreal line , with the link between functions and points being 
given by the isomorphism just described. What is remarkable about this link is 
the fact that an analytic function near the origin is described totally by 
knowing the single point where its graph meets the line x = !

7. The differential triangle of Leibniz

Let f:D R be an analytic function with extension f:D# . We view the 
graph of f through an optical microscope aimed at (x,f(x)). If o( )  o( ), then

x + , f x +( )( ) = st( / ), st an
n /

n=1

 

 

 

 
 

 
 

 

= ( ,a1 ),

where  is the real number st ( / ).
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Allowing  to vary, we see that, on looking through a microscope, an
infinitesimal portion of the graph of an analytic function is optically a straight
line with gradient a1 (Fig. 11).

FIGURE 11.

This is to be expected, for in essence we are looking at terms of a certain
order and ‘neglecting’ those of higher order, leaving only the linear
approximation.

We can define the derivative of an analytic function in infinitesimal terms
as

 f (x) = st
f(x + ) f( x) 

 
 
  (where  is a non-zero infinitesimal).

Thus we have

f ( x) = a1.

This discussion may be summed up as:

THEOREM 1. If f:D R is analytic, x  D, and  is a positive 
infinitesimal, then, through an optical microscope pointed at (x, f(x)), we 
have

 (x +  ,  f (x +  )) = (  ,  f ( x)  ) ,

where  = st ( / ).

We say that two points (x1,y1), (x2,y2) are optically indistinguishable through 
 if (x1,y1) = (x2 ,y2 )

We can then say that two graphs f, g through (x, y) are optically
indistinguishable if

(x + , f (x + )) = (x + ,g( x + ))

for o( )  ( ).
If y = g(x) is the tangent to the graph through (x0, y0) we have

g(x) = y0 +  f (x )( x x0 )
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and, of course,

(x0 + ,g(x0 + )) = (st( / ), st(  f (x) / ))

= ( ,  f ( x) ).

Hence the tangent is optically indistinguishable from the graph, or, in other
words, an infinitesimal portion of the graph looks the same as an infinitesimal
portion of the tangent through an optical microscope.

This notion is essentially found in the Lectiones geometriae of Barrow
(1670), where he performed computations and rejected second order (or
greater) infinitesimals: “If the arc is assumed indefinitely small, we may safely
substitute instead of it the small bit of the tangent” (in Child’s translation [5]).

In 1684 [6] Leibniz introduced the notation which has survived to the
present day, taking dx to be any infinitesimal and defining

dy =  f (x) dx

If we let x = dx and

y = f(x+ x) – f(x)

then (x + x, y + y) is a point on the graph, (x + dx, y + dy) is a point on the
tangent and these are optically indistinguishable seen through dx.

We recall from the end of §4 that any positive element of even order, such
as dx2 + dy2, will have a square root in  and we define

ds = (dx2+dy2)

We may then look through an optical dx-microscope (as in Fig. 12) to see the
differential triangle of Leibniz. The gradient of the graph is the gradient of the
tangent, namely dy/dx, and the infinitesimal segment of the graph is optically
a straight line of length ds.

FIGURE 12.

8. Integration

To compute the area beneath a graph, we begin by looking at an elemental
strip between x and x + , where  is an nth order infinitesimal. We have
developed two different methods of doing this, one through an astigmatic lens



– 20 –

looking at the whole strip (Fig. 10), the other through a microscope which
has only the top of the strip in the field of view (Figs. 11, 12). In the first case
we see the strip as a rectangle of area f(x)  plus terms of order higher than n.
Denoting the area under the graph from x = u to x = v by Af(u, v), then this
means that

Af(x, x+ ) – f(x)

is of order exceeding n; or, upon dividing through by the element  of order
n,

Af(x, x+ )/  – f(x)

is infinitesimal.
An alternative calculation can be made using the evidence of Fig. 11.

Since the area at the top of the elemental strip is a triangle to within terms of
order higher than n, we find the total area of the elemental strip as that of a
trapezium,

A f (x,x + ) = 1
2(f(x ) + f(x + )) + ,

where the error term  satisfies o( ) > n and does not register optically in a
microscope of order n.

But
f(x + ) = f(x) + 

where  is infinitesimal, so
A f (x,x + ) = 1

2(f(x ) + f(x + )) +

= f(x ) + ,

where = 1
2 +  is of order exceeding n. Once again we find that

A f (x,x + ) / f(x)  is infinitesimal.

We now define an area function Af for an analytic function f: D R (where D
is an open interval) to be a superreal function Af(u,v) of two variables u, v in
D#, such that

(i) Af(u, v) + Af(v, w) = Af(u, w) (where u, v, w  D#);

(ii) if x  D and  is a non-zero infinitesimal, then
A f (x,x + ) / f(x)  is infinitesimal.

The first of these simply states that the area function must be additive in the
usual way, conveniently expressed in a superreal formulation which proves to
be exactly what we shall need. The second is suggested by our computations.

From this definition we easily deduce:

THE FUNDAMENTAL THEOREM OF CALCULUS. If f: D R is analytic on the
open interval D, Af is an area function for f, and for some a  D we define

F(x) = Af(a, x) (for x  D#),
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then
 F = f .

Conversely, if the analytic function F satisfies  F = f , then

Af(a, b) = F(b)–F(a) is an area function.

PROOF. Given an area function Af for f, and defining F(x) = Af(a, x), then (i)
implies

F(x + ) F( x) = Af (x, x + ) ,

so (ii) gives

F(x + ) F( x)
f(x )  is infinitesimal,

and, taking standard parts, we find

 F (x ) f(x) = 0, as required.

Conversely if  F = f , then defining

A f (a,b) = F(b) F(a)

we trivially find that (i) is satisfied,  and

A f (x,x + )
f(x ) =

F( x + ) F( x )
f(x ),

so, taking standard parts,

st
Af (x, x + )

f(x )
 
 

 
 =  F (x) f( x) = 0,

which implies

A f (x,x + )
f(x ) is infinitesimal.

This gives (ii) and completes the proof.

We remark that Riemann sums are not essential in this theory, since their
chief function is to establish that an antiderivative actually exists. If

f( x) = an xn

n=0

is analytic, then

F(x) =
an x n+1

n + 1n=0

satisfies  F = f , so an antiderivative of an analytic function can be found by
explicit computation.
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In Leibniz’s notation we denote Af(a, b) by f(x ) dx
a

b
. Such a notation

arose because Leibniz [7] regarded the area as an infinite sum of strips height
f(x) and width dx. If we view such a strip through an astigmatic optical lens,
as in Fig. 10, then we do indeed find that each elemental strip is optically a
rectangle height f(x) and width dx. The fundamental theorem tells us that the
sum of such strips is given by

f(x ) dx
a

b
= F( b) F( a)

where  F = f .

9. Arc length

To compute lengths of curves, it is convenient to consider the more general
case of a curve given parametrically by

(t) = (f(t), g(t)) (a  t  b)

where f, g are analytic functions. If f(t) = t then this reduces to the graph of y
= g(x).

We have

(t+h) = (f(t+h), g(t+h)) (a  t  b)

and, looking through a -microscope pointed at (f(t), g(t)), we get
( (t + )) = (st({f(t + ) f(t)} / , st({g(t + ) g(t)}/ )

= (  f (t)st( / ),  g (t)st( / ))

= (  f (t) ,  g (t) ),

where  = st( / ). As usual, the graph is optically straight. We also find that

(f(t) +  f ( t), g(t) +  g ( t)) = (  f (t) ,  g ( t) ),

so (t+ ) is optically indistinguishable from (f (t) +  f (t),g( t) +  g (t ))

FIGURE 13.

It is reasonable to request that the length of the infinitesimal piece of curve,
from (t) to (t+ ), which is optically straight to order n = o( ), is of length

{ 2
 f (t)2

+
2

 g ( t)2}1/2

 to within terms of even higher order.
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By putting  = , this requires that the length of arc l(t, t+ ), from (t) to
t+ ) is

  
l(t, t + ) = {  f (t)2

+  g (t)2 }1/2  + terms of degree higher than ,

or, equivalently, that

  
l(t, t + ) / {  f ( t)2

+  g ( t)2}1/2  is infinitesimal.

We therefore axiomatise the notion of length of an arc by defining

 [a,b]#
= {t | a t b}

and then:

DEFINITION. The length function for an analytic curve (t) = (f(t), g(t))
(a t b) is the superreal function of two variables l(u, v) defined for u,v D#

such that

(i) l(u, v) + l(v, w) = l(u, w) (u,v,w  [a, b]#);

(ii) if x [a, b], x+   [a, b]#, where  is a non-zero infinitesimal,

then l(t, t+ )/  =  f (t) 2 +  g (t)2  is infinitesimal.

From (i), if L(t) = l(a,t), then L(t+ ) – L(t) = l(t, t+ ),

so (ii) implies

{L(t+ )–L(t)}/  –  f (t) 2 +  g (t)2

is infinitesimal, and taking standard parts,

 L (t) =  f (t)2 +  g (t)2 .

The fundamental theorem gives

l (a, b) = L(b) =  f (t)2 +  g (t)2dt
a

b
.

Conversely, if l is given by this equation then it easily follows that it sahsfies
axioms (i), (ii) for a length function.

10. Asymptotes

So far all the applications have concerned infinitesimals—now we close with a
brief use of infinite elements in looking at asymptotes. An example will make
this clear. We consider the hyperbola

x2

a2

y2

b2 = 1

and look at the portion f(t) = at, g(t) = b (t2 – 1) (t 1).
We may extend this function to (positive) infinite values of t, for if  is

positive infinite, then  = 1/  is a positive infinitesimal and
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f( ) = a ,

g( ) = b ( 2 1)

=
b

1 2( )
1/2

=
b

1 1
2

2 + …( )

= b +

where  is infinitesimal.

If we point a 1-window at (a 0, b 0), then for (x, y) in the field of view,

1(x,y) = (st(x–a 0), st (y–b 0)).

Putting = 0+k, where k is finite, we find

1 (f( ), g( )) = (st(f( ) – a 0 ),  st(g( ) – b 0 )

=  (st(ak ),  st(bk + ))

= (a , b )

where  = stk.

A similar computation gives 1(a ,b ) = (a ,b ), which means that through
the optical window 1, the point (f( ),g( )) on the graph is optically
indistinguishable from (a , b ) on the straight line

x
a

=
y
b

1
2

We may thus define two analytic curves to be asymptotic if they are optically 
indistinguishable when viewed through any window aimed at an infinite point. 
In practice this may involve a change in parametrisation of one of the curves 
to bring them into line. For instance, if

(t) =(t2, 2at),  (t) = (4t 2 
+ t 1,  4at) ,

then changing the parametrisation of the second curve to

(t) =  ( t) = (t 2 
+ 2t 1,  2at) ,

an optical 1-window aimed at ( ) where  is positive infinite gives

1 ( (w)) = (st(2 1), st(0)) = (0,0)

Thus ( ) and ( ) are optically indistinguishable through v, and the curves
are asymptotic.

In this way we see that, just as infinitesimals facilitate the calculus, so do
infinite elements prove useful in the theory of asymptotes.
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