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Part 1 

1. Introduction 
Equivalence relations are the basis of modern approaches to many topics in 
school mathematics, from the first ideas of cardinal number (through 
matching activities and correspondence between sets) through definitions of 
negative numbers (using ordered pairs of natural numbers), to equivalence of 
fractions, modular arithmetic, vectors, and many more advanced topics. We 
contend that these approaches to the subject have been based on an 
inadequate theoretical framework, causing an unnecessary schism between 
traditional mathematics and “modern” approaches. The missing link is the 
concept of a canonical element. Reintroducing this idea gives a much more 
coherent relationship between the structural elegance of equivalence 
relations in modern mathematics and the traditional aspect of computation. 
We tackle this in Part 1 of this paper, which follows. This in turn gives a 
clearer insight, as we shall see in Part 2, into certain technical and 
educational problems. 

2. Equivalence Relations 
We shall assume that the reader is familiar with the notion of an equivalence 
relation ~ on a set S. Being a relation means that for each ordered pair of 
elements a, b ∈ S, we either have a ~ b (a, b are related), or a ~/  b (a, b are not 
related). An equivalence relation satisfies the further properties: 
 (E1) a ~ a for every a ∈ S 

 (E2) if a  ~ b, then b ~ a 
 (E3) if a ~ b, b ~ c, then a ~ c. 

This partitions the set S into equivalence classes, where for any x ∈ S we denote 
the equivalence class containing x by 

Ex = {y ∈ S | x ~ y}. 

We find that Ex = Ey if and only if 

� 

x ~ y, and if 

� 

x / ~ y  then Ex∩Ey is empty, so 
Ex, Ey are disjoint. An alternative notation for Ex which we shall often use is [x], 
so 

[x] = {y ∈ S | x ~ y}. 



Further discussion of equivalence relations may be found in [9] or [11, p. 74 
ff.]. Here we content ourselves with some typical examples met in teaching, 
which we shall explore further as this article develops. 

Example 1: Cardinal Number 
Two sets are equivalent if there is a bijection (or one-to-one correspondence) 
between them. Some modern syllabuses in primary schools, inspired by Piaget 
(for instance [1], [5], [7]), begin by laying emphasis on matching activities as a 
preliminary basis for cardinal number. In other quarters (for example [6, p. 
192]), this approach is vigorously rejected. We shall consider this conflict later 
on. 

Example 2: Egyptian Number Symbols 
(An interesting historical example which could be used with advantage in 
primary schools.) The ancient Egyptians used stroke | to denote a unit, a hoop ∩ 
to denote 10 and a scroll  to denote 100, with other symbols for higher 
powers of I0. Two collections of such symbols are equivalent if they represent 
the same number, for instance 12 strokes | | | | | | | | | | | | are equivalent to one 
hoop and two strokes ∩ | |. 

Example 3: Integers (Positive and Negative) using Ordered Pairs of Natural 
Numbers 
Let N denote the set of natural numbers 0, 1, 2, 3, . . . If wish to “construct” the 
integers Z (including negative integers) then one method is to consider ordered 
pairs (m, n) which m, n ∈ N and to define an equivalence relation. 

 
(m1, n1) ~ (m2, n2) if and only if m1 + n2= m2 + n1 

Thus, for example, (1, 0) ~ (2, 1) ~ (3, 2) ~ … ~ (n+1, n) ~ … , (2, 0) ~ (3, 1) ~ 
(4, 2) ~ … ~ (n + 2, n) ~ …. 

This cunning device yields a “definition” of the integers (positive and 
negative) as the equivalence classes, namely 

+1  = {(1, 0), (2, 1), . . . (n+1, n), …}, 
+2  = {(2, 0), (3, 1), . . . (n+2, n), …}, 
… 

also 
 0 = {(0, 0), (1, 1), …, (n, n), . . .} 
–1 = {(0, 1), (1, 2), …, (n, n+1), . . .}} 
–2= {(0, 2), (1, 3), …, (n, n+2), . . .} 



In essence the integer +k or –k denotes the amount by which the first element in 
an ordered pair exceeds the second, as can be seen by looking at the above 
instances. 

This method (which we do not advocate for teaching purposes) has been 
called (rather affectedly) the “Doncaster method” in [1], though it is based on a 
well-known mathematical construct and has been used before by other 
mathematical educationists in other forms (such as [3] or the Nuffield Primary 
Mathematics Project). 
Example 4: Fractions 
Two fractions p/q, m/n (where p q, m, n are non-zero natural numbers) are 
equivalent (and we write simply p/q = m/n), if pn = mq. (This can also be 
treated using ordered pairs in a manner analogous to example 3 by writing 

(p, q) ~ (m, n) if pn = mq, 
but we won’t dwell on that here. For details, see [11, Chapter 10], or [1].) 
Example 5: Modular (or “Clock”) Arithmetic 
We shall work modulo 3 for simplicity (the same phenomenon, of course, 
works with 3 replaced by any other positive integer). Two integers are 
“equivalent modulo 3” if their difference is divisible by 3. For instance, 1 is 
equivalent to 4, 2 is equivalent to 368, –1 is equivalent to 2. The equivalent 
classes are: 

E0 = {…, –6, –3, 0, 3, 6, 9, …} = E3 = E6 = … , 
E1 = {…, –5, –2, 1, 4, 7, 10, …} = E4 = E7 = … , 
E2 = {…, –4, –1, 2, 5, 8, 11, …} = E5 = E8 = … . 

of course we also have E0=E–3 = E–6 =… , and so on. 
These examples will be sufficient for our purposes, but many more occur in 
mathematics, see, for instance [9]. We shall consider other examples in the 
second article. 

3. Canonical Elements 
Wherever there is an equivalence relation, we can select canonical elements. 
Quite simply, we do this by choosing a single element from each class. Then 
that element is called the canonical element (or representative) for that class. As 
an example we can take the set of children in a classroom and use the 
equivalence relation “is the same sex as”, which divides the children into two 
equivalence classes: the boys and the girls. (For this example we shall assume 
the children are mixed to prevent the discussion being trivial.) A canonical 
choice of elements is then one boy (a particular one, say, Joe), and one girl (say, 
Ann). It doesn’t matter which boy or girl we select as long as we have in mind 



precisely one of each. We don’t have to pick the best, or the biggest, or “the 
most typical”, as long as we have just one from each equivalence class. There is 
no coloration in the meaning of a “canonical element” beyond that (arbitrary) 
choice. 

In the mathematical examples we considered in the last section, however, 
there is in each case a “natural” choice of canonical element which is usually 
made by mathematicians. In fact these canonical elements were the stuff of 
mathematics before modern set theory was a twinkle in Cantor’s eye. We shall 
see that it is the manipulation of these canonical elements that constitutes the 
traditional art of calculation in mathematics. 
Example 1: Cardinal Number 
In school we are concerned only with finite sets. Counting a finite set of 
elements is performed by pointing to each element in turn and saying “one”, 
“two”, “three”, … until we have pointed at each elements precisely once. The 
last number that we recite is the number of elements in the set. In practice this 
means that a set with (say) four elements is put into one-one correspondence 
with the set (one, two, three, four). All sets equivalent to the given set can also 
be put into one-one correspondence with (one, two, three, four), so the latter is a 
natural choice of canonical element. Of course, we don’t have to wrap it up in 
set theoretic rigmarole. We shall return to this point in Section 6. 
Example 2: Egyptian Number Symbols 
The canonical choice (for numbers less than 1,000) is the representation which 
has less than 10 of each symbol. This corresponds to our decimal notation in the 
obvious way, for instance in the equivalence class containing | | | | | | | | | | | | (12 
strokes), the canonical element is one hoop and two strokes, ∩ | |. 
Example 3: Integers using ordered pairs of natural numbers. 
If m ≥ n, a sensible choice of canonical element in E(m,n) (the equivalence class 
containing (m, n)) is (m–n, 0). For m < n we choose (0, n–m). In this way every 
ordered pair is equivalent to a canonical element of the form (k, 0) for k ≥ 0, or 
(0, k) for k<0. Of course this makes (k, 0) the canonical choice in the class +k 
and (0, k) the choice for –k. As we shall see later, there isn’t much in a name. 
Example 4: Fractions 
The natural choice of canonical element for equivalent fractions is “the one in 
lowest terms”. 
Example 5: Modular Arithmetic 
Working modulo 3, the natural choice of canonical elements in the classes E0, 
E1, E2 are 0, 1, 2 respectively. 



4. Calculations 
All the examples we have mentioned above were specifically selected because 
we do calculations with them. In all cases we have an operation of addition and 
also multiplication. For the moment, let us concentrate on the former. 

The primitive addition of cardinal numbers (say three plus five) may be 
achieved by choosing a set of three objects (in one-one correspondence with 
lone, two, three)) then a disjoint set of five objects, putting the two sets together 
and counting them: “one, two, …, eight” to find “three plus five is eight”. There 
is a subtlety here in the choice of disjoint sets which is not found in adding two 
Egyptian numbers, where one simply takes the two collections of symbols all 
together. We can symbolise this using a (we hope) forgivable mixture of ancient 
and modem notation by writing 26+15 as: 

∩ ∩ | | | | | | + ∩ | | | | |  = ∩ ∩ | | | | | | ∩ | | | | | 
This combination of symbols is not in canonical form, but we can complete the 
calculation by replacing the answer by the canonical element in its class 
(effected by replacing ten strokes by an equivalent hoop), thus: 

∩ ∩ | | | | | | ∩ | | | | | = ∩ ∩ ∩ | | | | | | | | | |   | 

 = ∩ ∩ ∩ ∩ |. 
This, in essence, is the procedure that first school children use when they 
perform addition on an abacus (see, for example, [2, book 1, p. 9]). Here 
“twenty-six plus fifteen” is represented as: 

 
tens units 
oo 
o 

oooooo 
ooooo 

which becomes, on exchanging 10 units for one ten: 
 

tens units 
oo 
oo 

o 

which is 41. 
In example 3, addition of ordered pairs of natural numbers may be defined by 
adding the components: 

(m, n)+(p, q)=(m+p, n+q). 



This also allows us to add equivalence classes, for instance, to add +2 and –3, we 
select any elements we wish from the appropriate equivalence classes, say (2, 0) 
and (0, 3) to get 

(2, 0) + (0, 3) = (2, 3). 

Now (2, 3) is equivalent to (0, 1) and both are in the equivalence class –1, hence 
+2 + –3 = –1. 

In example 4, when adding fractions m/n and plq, we put them over a “common 
denominator”, say nq, to get: 

m/n + p/q = (mq + np)/nq. 
We then proceed to reduce the answer to lowest terms. In practice we may 
develop more refined techniques; we do not need to use the common 
denominator nq because the lowest common multiple of n and q will do, thus: 

1/2 + 1/6 = 3/6 + 1/6  = 4/6 
  = 2/3 (in lowest terms). 

Finally, example 5, modular arithmetic, involves similar principles. For 
instance, to calculate 2 + 2 (modulo 3) we first compute 2 + 2 = 4, then find the 
canonical element equivalent to 4, namely 1, so 

2 + 2 = 1 (modulo 3) 
Some mathematicians prefer to write this as 

2 + 2 ~ 1 (modulo 3), 
yet others prefer to use equivalence class notation: 

E2 + E2 = E2+2 = E4, 
and, of course, E4 = E1 so we get 

E2 + E2 = E1. 
As in this last case, all the examples can be interpreted using either equivalence 
classes or canonical elements. The modern approach favours equivalence 
classes, the traditional computational one favours canonical elements. 

In each case we have a set S on which an operation of addition is defined. (It 
could be any other binary operation, such as multiplication, but for simplicity of 
explanation we shall use addition.) Also S has on it an equivalence relation. 

The case of addition of integers 

 +2 + –3 = –1 
is typical, in that we can extend the addition of elements (in this case addition of 
ordered pairs (m, n)) to the equivalence classes themselves. 

The method is this: 



To add equivalence classes Ex, Ey form the equivalence class Ex+y containing 
x+y, and this is the answer. Thus 

 +2 + –3 = E(2,0) + E(0,3) = E(2,3) = –1 
This is the modern formulation using only equivalence classes. 

A traditional formulation, using only elements, follows the pattern of adding 
fractions: 

1/2 + 1/6 = 3/6 + 1/6 = 4/6 = 2/3. 
The link between these two types of formulation is the notion of a canonical 
element, as we see in Figure 1. 

 
Figure 1 

The upward vertical arrows correspond to finding the equivalence class to 
which an element belongs (usually easy), the horizontal arrow is the operation 
of addition on classes, the downward arrow is picking out the canonical element 
in a given class (usually harder and more algorithmically contrived). 

The modern formulation usually involves only the top of this diagram (see 
Fig. 2). 

 
Figure 2 

It is just the definition 
Ex + Ey = Ex+y . 

The traditional formulation usually avoids all reference to equivalence classes 
and works on the element level, as in Figure 3. 



 
Figure 3 

In this diagram we start with elements x, y, then operate to get x + y, then find 
the equivalent canonical element k. 

The difference between Figures 2 and 3 represents the schism between 
modern and traditional approaches. The unification in a single framework is 
given by Figure 1. It is in analysing the total structure that we shall obtain a 
blend of the old and new. But before we do this we must digress for a while to 
consider an important technicality. 

5. A Technical Problem 
In carrying over a binary operation from elements to equivalence classes 

there is a technical problem which proves difficult for beginners to grasp yet 
which forms an essential ingredient in the whole picture. In defining the sum of 
Ex and Ey as Ex+y, we have skated over the problem of the name of the 
equivalence class Ex+y. For instance if x′ is another element equivalent to x, then 
Ex′ and Ex are one and the same. The symbols Ex′ and Ex, are just different 
names for the same equivalence class. Suppose that we calculate Ex′ + Ey 
instead of Ex + Ey, then we would get the answer: 

Ex′ + Ey = Ex′+y. 
The central problem is: can we be sure that the equivalence class Ex′+y is the 

same as Ex+y? Worse still, suppose we compound the problem by considering 
another y´ such that y ~ y´ (in which case Ey = E y′). Would we find that 

Ex′ + Ey′ = Ex′+y′. 

is the same equivalence class as Ex+y? If we can’t, then the whole process of 
defining the sum of Ex and Ey breaks down because we may get different 
answers Ex+y and Ex′+y′ depending on which elements we select from the 
equivalence classes to perform the computations. For the sum to carry over 
from elements to equivalence classes we require the condition 

if x ~ x´ and y ~ y´, then we must also have x+y ~ x´+y´ 
As an example, consider addition modulo 3. Here, by computation, we have: 

E1 + E2 = E3, 
but 

E1 = E4, E2 = E8, 



and 
E4 + E8 = E12. 

Fortunately, we have E12 = E3, (because 12 – 3 is divisible by 3), so we 
encounter no problem in this case. In fact we encounter no problem in any of 
the examples given, because in all cases, x ~ x´, y ~ y´, implies x+y ~ x´+y´ as 
the reader may verify. 

But what of a general operation ° on a set S with equivalence relation ~ ? We 
might wish to carry over the operation o to equivalence classes by defining 

Ex ° Ey = Ex°y. 

To do this requires the general property 
x ~ x´, y ~ y´ implies  x°y ~ x´°y´. 

If this does not hold, the whole thing breaks down. As an example (taken from 
[11, p. 77]), consider the operation on integers 

x °y = xy. 
Denoting the equivalence class of n modulo 3 by [n], we might attempt to 

define the taking of powers for numbers modulo 3 by: 
[x]°[y]= [x°y] 

or, in other words, 
[x][y] = [x y]. 

This does not work. For instance, if x = 2, y = 2, we get 
[2][2] = [2 2] = [4] = [1]. 

But [2] = [5] 
and 

[2][5] = [2 5] = [32] = [2]. 
The classes [1] and [2] are different. 

This is because 

x ~ x´, y ~ y´ does not imply  xy = ( !x )
!y  

in general. As a counter example we have 2~2, 2~5, but 

� 

2
2

/ ~ 2
5. This warns us 

that, in general, just blindly pressing on without checking that 
x ~ x´, y ~ y´ implies  x°y ~ x´°y´. (*) 

can sometimes lead to nonsense in handling computations with equivalence 
relations. 

The astute reader may notice that we do not get any such problems in 
defining operations on the corresponding canonical elements, at least as far as 



the definition itself is concerned. We can always define an operation on 
canonical elements alone by starting with canonical elements x, y, then forming 
the composite x°y; this of course need not be a canonical element, but it is 
equivalent to a unique canonical element k. We therefore define a new operation 
on canonical elements associated with ° by defining x, y to be the unique 
canonical element k which is equivalent to x°y. 

For instance, if x°y = xy, we can define a new operation on the canonical 
elements 0, 1, 2 (modulo 3) in this fashion. To compute 22 (where 2 is now 
thought of as a canonical element), we first compute 22 (as an integer) to get 4, 
then take the canonical element equivalent to 4 modulo 3, namely 1. In this way 
we are able to compute all powers xy where x, y run through the values 0, 1, 2 
(considered as canonical elements modulo 3). 

Although we have been able to make such a definition, we haven’t really 
gained anything, because the simple rules of powers break down. For example 
we can compute 

21 = 2, 22 = 1 (as canonical elements), 
but 
(22)2 = 12 = 1 
22×2 = 21 = 2 
(22)2 ≠ 22×2. 
Hence in general we may have 
(xm)n ≠ xmn when computing with canonical elements modulo 3. 
It is all a matter of swings and roundabouts: the difficulty simply pops up 

somewhere else. 
Returning to the case where the fundamental property (*) does hold, we find 

genuine differences between the equivalence class approach and that using only 
canonical elements. If the operation ° on the elements has basic algebraic 
properties, for instance, associativity or commutativity, then these can be seen 
to carry over easily to the induced operation on equivalence classes. For 
instance, if we suppose that 

x°y = y°x 
then we find 
Ex ° Ey =Ex°y  (by definition) 

 =Ey°x  (since x°y = y°x) 

= Ey ° Ex, (by definition again). 
Thus a commutative operation on elements induces a commutative operation 

on equivalence classes; the analogous statement for associativity follows just as 
easily. 

However, at the canonical element level there is more difficulty with the 
associativity proof. We compute (x°y)°z, first by finding x°y equivalent to a 



canonical element k, then computing k°z and finding the canonical element 
equivalent to this. On the other hand, in finding x°(y°z), we first find the 
canonical element c which is equivalent to y°z, then, when we compute the 
canonical element equivalent to x°c, it is by no means clear we end up with the 
same element as before. In fact to show this is so we have to appeal to the full 
force of condition (*). We know 

x°y ~ k, y°z ~ c 
hence, using (*), we get 
k°z ~ (x°y)°z = x°(y°z) ~ x°c. 
Because ~ is an equivalence relation, we deduce k°z ~ x°c, and so the two 

elements k°z, x°c are equivalent to the same canonical element. 
Thus the proof of associativity for the product of canonical elements has to 

use (*) for elements such as x°y, y°z, which may not be canonical, and we are 
forced to see the canonical elements within a broader framework. 

This demonstrates that traditional computations with canonical elements are 
better viewed within the context of equivalence relations. 

On the other hand, mathematicians must be able to compute, so they need in 
the end to be able to handle the manipulation of canonical elements. Hence the 
best solution is to gain a global view of the whole picture, placing canonical 
elements within the framework of the theory of equivalence classes. This we 
shall do in Part 2 of this article, with special reference to mathematical concepts 
taught in school. 

References 
1. Auckland, K. et al. (1977). Primary Mathematics, Globe Education. 
2. Cordin, P. W. (1970). Number in Mathematics, Macmillan. 
3. Dienes, Z. P. (1960). Building Up Mathematics, Hutchinson. 
4. Donaldson, M. (1978). Children’s Minds, Fontana. 
5. Fletcher, H. (1970). Mathematics for Schools, Addison Wesley. 
6. Freudenthal, H. (1973). Mathematics as an Educational Task, Reidel, Holland. 
7. Nuffield Foundation (1970). Mathematics: the first 3 years, W. and R. Chambers, John 

Murray. 
8. Piaget, J. (1952). The Child’s Conception of Number, Routledge and Kegan Paul. 
9. Quadling, D. (1969). The Same but Different, George Bell. 
10. Schwarzenberger, R. L. E. and Tall, D. O. (1978). “Conflicts in the Learning of Real 

Numbers & Limits”, Mathematics Teaching, No. 82. 
11. Stewart, I. N. and Tall, D. O. (1977). Foundations of Mathematics, OUP. 
12. Tall, D. O. (1977). “A Long Term Learning Schema for Calculus & Analysis”, 

Mathematical Education for Teaching, Vol. 2, No. 2. 
13. Tall, D. O. Historical, Logical and individual development of mathematical ideas and the 

relevance in teaching. (In preparation.) 


