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1. The basic problem

The understanding and teaching of calculus in schools and analysis in
universities have long been considered subjects of great difficulty. The
Assistant Masters Handbook [6] says “its ideas are so novel that there
must be no attempt to rush the early stages”. Vast numbers of textbooks
are available, seemingly covering every conceivable approach, but many
problems remain.

Most solutions restrict themselves to one particular area of
development, a school text, a university lecture course and so on. In this
article we look at the possibility of establishing a long term schema
which unites an intuitive approach to the calculus with a rigorous
approach to analysis arising naturally from the earlier intuition: It cannot
be a universal panacea, because the complexity of the subject remains,
but it is hoped that the approach will be more coherent and realistic at
each stage of development. Its origin lies in the realisation that analysis as
taught in most colleges and universities is totally inappropriate for the
teaching of calculus in schools. Analysis done badly can involve a
logical, analytic approach which destroys the student’s faith in geometric
intuition and drawing pictures. A student who has done an initial course
in calculus can differentiate and integrate many complicated functions; he
adds very few more to his repertoire in analysis. Instead he spends
endless time on long and arduous proofs of results which seemed
intuitively obvious, often ending up confused about ideas which he
thought he understood before the course started. If he becomes a teacher
he finds that the sophistications of analysis are inappropriate for teaching
calculus, but he is now worse off than when he was at school because he
has developed inner phobias about the subject. So he totally rejects
analytic ideas and returns to teaching calculus in the manner he learnt in
school, now coloured with apprehension at the back of his mind. He can
easily pass his fear on to his pupils and the cycle of difficulty is set up
                                                
1 First published in Mathematical Education for Teaching 2, 2, 1975.
This was my first published article on the teaching of calculus and analysis. At the
time I was a mathematics lecturer steeped in formal mathematical ideas, anxious to
communicate them to undergraduates. Since that time my views have changed to a
more realistic consideration of what students can achieve. However, this article
contains the seeds of important ideas, so it is reproduced here with all its strengths
and manifold weaknesses to reveal the starting point of various theories. David Tall
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again in the next generation. It is this cycle which lecturers training future
teachers must break. It can be represented by the diagram:

teach
calculus

learn
calculus

learn
analysis

Standard solutions to this syndrome usually involve attempts at
simplifying the sophisticated analytical notions to a level that college
students might understand. This is not only demeaning to the students, it
is also no answer to the problem because it rarely relates analysis fully to
the ideas of calculus used in schools. Such a solution is simply putting the
cart before the horse because calculus as a technique precedes analysis
both historically and within the development of the subject in schools.
Instead of forcing analytic ideas down into calculus, surely it might be
more appropriate to look at calculus and see how intuitive geometric
ideas can be refined to give rigorous notions in analysis. Instead of trying
to replace the calculus schema by a formal analysis schema, leading to
conflict between the two, the whole system should be realigned so that
the concepts of the calculus are accommodated within a broader schema
of analysis. Given such an approach, one might hope that the study of
analysis could put the future teacher in a position to revitalise the
teaching of calculus as represented in the following diagram:

teach
calculus

learn
calculus

learn
analysis

2. Extrapolating Piaget

In teaching mathematics we are increasingly giving weight to the
developmental level of the learner. For example we realise that in the
concrete operational period (approximate age range 8–11 years) that
logical thought of a sort is possible, provided that it is rooted in concrete
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experience. After this period children enter a stage of development of
formal thought, where abstract logical deduction becomes increasingly
possible.

Formal methods of thought are essential to the study of analysis. For
example there are many instances of proof by contradiction; this involves
supposing that the impossible could happen and showing that such an
assumption leads to a contradiction. A method of proof like this is beyond
the realms of anyone who cannot detach his thinking from actual concrete
experience. It follows that much of analysis is beyond his understanding.

Let us extrapolate Piaget's theories a little with specific reference to
mathematics, according to the experience of teachers in colleges and
universities. We will postulate the existence of a stage of development
beginning when isolated examples of formal deductions become possible.
As an observation of the problems of college and university students I
suggest that there is a stage where isolated deductions are possible, even
short chains of such deductions, but there comes a point where enough
formalism becomes too much and the mind withdraws from the contest.
This corresponds to the plea “I can follow the proof step by step but I
don’t understand it.”

In a sense this is a formal analogue of what happens in the earlier
period of intuitive thought and I hope the expert reader will bear with me
as I explain the analogy. If a child at this stage sees a glass of lemonade
poured into two smaller glasses he says there is still the same amount, but
poured into a much larger number of glasses (four or five) he is seduced
by the visual impact into saying there is more lemonade. This is a
“catastrophe” situation in which there are conflicting forces acting on the
child, his external visual experience and his growing internal conviction
that the amount must be conserved. Before the period of intuitive thought
only the former experience operates, but during this period the latter
comes into play as a conflicting factor. With only two glasses his internal
feeling is uppermost and his visual experience is not overstretched; but
increase the number of glasses and the effect of the visual experience
becomes more significant. His internal feeling is tested until he snaps and
jumps to his old belief of non-conservation. This seemingly irrational
jump from one belief to the other is the natural consequence of a mind
under two conflicting pressures where first one pressure is adhered to and
then a steady increase in the other can cause a sudden jump to it (called a
catastrophe).

In the later stages of formal operational thought we may be in a
similar position. At an earlier stage the learner is content to follow his
intuitive understanding, but with the coming of greater maturity the
necessity for formal proof becomes increasingly apparent. Just as there is
a transitional period of intuitive thought in earlier life where conflict
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occurs, all the ingredients are present once more in this formal stage.
Faced with a mathematical fact that is intuitively evident, the growing
need for formal proof can be acknowledged but if the chain of reasoning
in the proof is too long for the learner, he rejects it mentally and is
content to rely on his intuition. At this stage a completely formal
development of analysis is not viable because the mind is not capable of
taking it all in. From experience a large number of first year college and
university students seem to be in such a position. Even if the diagnosis is
not confirmed by future research, we still have the observation that some
students can follow a proof line by line, yet be uneasy about the proof as
a whole (especially where contradiction is involved). This may be due to
other factors (for instance the sheer cognitive strain of handling too many
concepts) but the remedy for the situation may still be the same as that
about to be suggested. Just as in the concrete operational period the
child's logical thought must be related to concrete experience, so in this
formal transition period, logic must be attached to intuitive abstract ideas
with chains of formal deductions between such attachments being as
short as possible.

As a long-term schema for calculus and analysis therefore the
beginnings of calculus should be intuitive, related directly to concrete
experience, the transition to analysis in first year degree courses should
not be completely formal, but attached at frequent intervals to intuitive
experience, and complete formalism should come with increasing
mathematical maturity, if and when this capability is developed. In line
with the first section of this article we should look at the intuitive ideas of
calculus carefully to see if they are capable of progressive refinement to
give analytic ideas rather than operate in the opposite direction.

The best place to begin developing a long-term schema is not at the
beginning, but at the transition from calculus to analysis with the teachers
of the future. Until these teachers are convinced that a new approach is
both possible and necessary we cannot hope to change the current
situation. It is to this area that the rest of this article is addressed. The
ideas should be suitable for first year university, honours B. Ed, and for
mathematically inclined sixth-formers. Pass degree students could follow
the same course but concentrate more on the intuitive links and the ideas
of calculus. Whoever understands this approach is likely to be much
better equipped to teach elementary calculus and see its position in a
long-term learning schema.

3. Practical drawing

The whole schema grows out of a consideration of the factors involved in
drawing graphs. In the first place, no matter how accurately the values of
a function are known, a graphical representation has very limited



– 5 –

accuracy. A fine drawing pen marks ink lines approximately 0.1
millimetres thick, so marking a "point" really means a blob about 0.1
millimetres across. The theoretical point is really somewhere in the
middle of such a blob, so if two theoretical points are much less than 0.1
millimetres apart, the blobs representing them on a drawing are liable to
overlap. Even using a large piece of paper  with 1 metre representing a
unit length, two such points 0.1 millimetres apart on a number line
represent numbers which differ by 0.1/1000 = 1/104. To such a scale it is
difficult to distinguish points which only differ beyond the fourth decimal
place. Accuracy to four decimal places is as much as we can hope for and
even this may not be achieved. Using a much larger scale leads to
surprisingly little increase in accuracy. If the distance from the equator to
the north pole (10,000 kilometres) is taken as a unit length then using a
fine drawing pen gives the ratio 0.1/l0,000,000,000 = 1/101l and a
plausible accuracy of at most 11 places of decimals. This means that we
have little chance of distinguishing between any real number and its
approximation to, say, 12 decimal places, in particular we cannot
distinguish between an irrational number and a rational approximation to
it. In a drawing we cannot distinguish between the real line of modern
analysis and the rational line of the ancient Greeks.

Suppose that we think of a continuous function as one whose graph
can be drawn freely without removing the pen from the paper. (If the
domain or range is unbounded, we will only be able to draw a finite part
of the graph.) Such a function defined on a closed interval [a,b] with f(a)
negative and f(b) positive must cross the axis somewhere in between, it is
not physically possible to draw it otherwise. For example the function
f(x)=x2–2 has this property on the interval [1,2]. If we considered this
function to only be defined for rational values of x, then the result would
be false. There is no rational number x in [1,2] such that f(x)=0, although
no drawing of the graph would actually exhibit this property, because the
inaccuracy of drawing prevents us from distinguishing rationals from
irrationals. Spatial intuition in this case relates to the real line, not the
rationals. The moral is that in dealing with continuous functions if we
want the theorems to align with our intuition, then we must introduce the
completeness property for the reals (in some suitable form) right at the
beginning.

At the same time it is totally at variance with spatial intuition to do
this by saying that there are “gaps” on the rational line because numbers
like √2 are missing. On a physical drawing we cannot distinguish the real
line from the rationals, so in an actual picture there are no gaps. The
simplest way to introduce completeness is to imagine a real number x on
the real line and then successively divide the scale into tenths,
hundredths, thousandths and so on to read off the value of x to one, two,
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three, … decimal places. Of course the inaccurate drawing will only
allow us to find a few decimal places but our imagination allows us to
think that we can get as many places as we like. having found x to n
places, i.e. a0⋅a1…an, where a0 is an integer and a1, . . ., an are integers
between 0 and 9, then the next place is given by

a0⋅a1…anan+1 ≤ x < a0⋅a1…anan+1 + 1/10n+1 .

The completeness property can be interpreted as saying that the real
numbers consist precisely of infinite decimals which arise in this way.
This property allows us to refine our intuition towards a more formal
definition of the real numbers later on.

At this stage it would be convenient to talk about convergent
sequences. The formulation “we can make an as close as we please to the
limit l  by making n sufficiently large” has unfortunate hidden

connotations. For example “close” usually means “near, but not equal to”.
When later dealing with the limit lim

x→a
f (x), then x is allowed to get near

but not equal to a although f(x) can equal f(a). This fine distinction can
cause very deep subliminal confusion to students, even to those who
seem on the surface to understand it. They often feel that f(x) gets close to
the limit but never quite gets there. To avoid the problem, one only has to
look at a drawing. If one draws a sequence converging to a limit, the
terms not only get close to the limit, because of the built-in inaccuracy of
drawing they actually become indistinguishable from it. To conceive of
the abstract idea of convergence, one just must imagine that this happens,
no matter how accurately one draws, realising that if the drawing is more
accurate then it may be necessary to draw many more terms before they
become indistinguishable from the limit. This can be refined to the usual
definition by saying two real numbers x and y are “ε-indistinguishable” if
|x–y| < ε. Then an →l means:

given any accuracy ε>0, there exists N such that if n>N, then
an and l are ε-indistinguishable.

Even if you find these words a bit gimmicky, it is still possible to use this
approach to get the usual definition.

Given a real number x, then working out x to one, two, three, and
more decimal places gives a sequence of rational approximations which
tends to x. Within this scheme we can fit decimals which end in an
infinite sequence of 9’s. For example the sequence 0⋅9, 0⋅99, 0⋅999, …
tends to the limit 1, so the infinite decimal 0⋅999. . . is another way of
representing the real number 1. (Teachers who talk about equivalence
relations might be interested in this example of equivalence of decimals
which represent the same number. The equivalence classes contain either
one, or two infinite decimals. The latter occurs with terminating decimals
which can also be written ending in an infinite sequence of 9’s.)
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With this basic foundation it is perfectly feasible to deduce other
forms of the completeness property in ways which appeal strongly to
geometric intuition. (See [4] or [5].) These include the property that
increasing sequences bounded above have a limit, as do decreasing
sequences bounded below. The least upper bound property can be linked
to intuitive geometric idea, and also follows from the use of infinite
decimals. I personally would forget about Dedekind cuts because they
assume that the rationals are there and describe the reals in terms of them.
Since our spatial intuition suggests properties like the intermediate value
theorem which correspond to the reals, not the rationals, it is foolish at an
early stage in the development of the subject to construct something
which intuitively the students believe to exist anyway. When dealing with
graphs and the calculus, the basic number system that students should be
asked to believe in is the real line, with its properties of arithmetic, order
and completeness. This has the advantage that the basic number system R
has the natural numbers N, the integers Z and the rationals Q as subsets.*

4. Continuous functions and drawing graphs

It is significant that most early approaches to calculus do not mention
continuity. The fact that a differentiable function must be continuous
contributes to this, but the main reason is surely that formal continuity is
a difficult topic to understand at an early stage. The intuitive idea that a
real function is continuous if its graph can be drawn freely without taking
the pencil off the paper is easy to grasp. Little credence is given to this
concept because it is not usually properly linked to the formal definition.
In fact the two are interchangeable, provided that one interprets them in
the appropriate context. (See [5]). The school teacher who understands
this need no longer feel uneasy about using the simple geometric idea of a
freely drawn graph to describe continuity because it is now part of a
coherent long term schema which develops the formal definition later on.

One of the “pay-offs” of this approach is that it clearly labels
continuity as a global property where a function is continuous
everywhere in its domain. The usual formal approach describing
continuity at a point first by the ε–δ definition (or neighbourhoods) often
lays too much emphasis on this restricted concept. As such it does not
                                                
* The current emphasis that the positive integers are different from the natural
numbers because the former are equivalence classes of ordered pairs of the latter is a
gross mistake. It is only a temporary distinction which occurs should one wish to
construct Z from N. Mathematicians invented the notion of isomorphism precisely to
describe the idea of the same basic mathematical system turning up in different
guises. The natural numbers can be used both for counting and for naming points at
equal intervals on a line; this can be considered as the same basic mathematical
system having two isomorphic manifestations. Since counting numbers are visibly
different from points on a line, this interpretation is in accord with the students’
intuition.
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accord with the notion of a freely drawn graph which gives the ideas of
continuity over an interval. Functions like

f(x) = 1/q when x = p/q in lowest terms, f(x)=0 when x is irrational,
which is continuous only at irrational points, are all right when the
students’ intuition has been refined, but they may be too disturbing to be
introduced at the beginning. If at first we consider functions continuous
on connected2 sets then their graphs look like those of our naive intuition
and if we then restrict to closed bounded intervals we can actually draw
the graph on a piece of paper. (See [5]).

5. How difficult?

Here is the rub. What is formally difficult is often closer to intuition and
vice versa.

To a mathematician an axiomatic system is often logically simpler if it
contains fewer axioms. Because the completeness axiom is a little
involved, it may be considered logically simpler to omit it at the
beginning of an honours degree course. Formally this means dealing with
an ordered field instead of a complete ordered field.

Developmentally using fewer axioms in this manner can be more
complex because there are many different ordered fields (including the
reals, the rationals and other more exotic examples) whereas there is only
one complete ordered field. If a student is incapable of long chains of
deduction and we wish him to retain a link to his intuitive understanding
of the real line we must therefore include some form of the completeness
axiom.

Likewise the notions of connectedness of a subset and compactness
(introduced in a more restricted form using closed bounded intervals) are
best introduced right at the beginning. If a set S is not connected, then the
graph of a continuous function defined on S can “jump” at missing points
e.g.

f(x) = 1/x       S= R\{0}
jumps at the origin.

2 A set S ⊆   R is connected if given a, b ∈  S, a < x < b, then x ∈ S. This definition 
generalises topologically to the notion of a path-connected set.
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More insidiously, if we only deal with rational numbers then the function
f:Q→Q given by

f (x) =
1 x < √2, x rational

2 x > √2, x rational







is continuous according to the ε-δ definition:

It jumps over the missing point √2 and there is no reason why we should
not concoct continuous functions defined on the rationals which jump at
many places.

For example:

c( x ) =

0 for x ≤ 0

1 / (n + 1) for 
√ 2

n + 1
< x <

√ 2

n
,  n a positive integer

1 for x > √2











Continuous functions on the rationals cannot always be drawn without
taking the pencil off the paper, yet in a practical picture we cannot
distinguish rational and irrational points! To get the formal idea of
continuity to correspond to the practical drawing idea we need to work
with the reals, including completeness and connectedness. To be able to
draw the graph on a piece of paper we need the domain to be bounded
and the range to be bounded. This can be achieved by working over a
closed bounded interval.
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In practice all the notions of completeness, connectedness, closed and
bounded are very simple and directly linked to a student’s intuitive idea
of the real line. Of course the theorems involved are still as difficult but
the concept of continuity now links up with spatial intuition. The student
can draw pictures and know how to interpret them. This should lessen
cognitive strain and prove psychologically more satisfying.

6. Benefits in Calculus

By throwing in the concepts of completeness, connectedness and closed
bounded interva1s early on there are other compensations. Differentiation
and integration correspond to the physical concepts of gradient of a graph
and area under a graph, and these notions can be made rigorous. It is even
possible to draw a graph of an everywhere continuous nowhere
differentiable function, remembering that such a drawing is only accurate
to two or three decimal places so does not represent the function
precisely. Drawing such a graph is in general no harder or easier than
drawing the graph of a differentiable function. This is because the pencil
used for drawing gives a line of finite thickness and the picture glosses
over tiny wrinkles which would occur in a theoretical graph. But it is
more intellectually honest. (There are far more continuous, non-
differentiable functions than differentiable ones.)

Emphasis on connectedness also refines and corrects a point glossed
over in early calculus. We will call a function F:D→R an antiderivative
of f:D→R (where D⊆ R) if F'=f. In early calculus it is shown that the
derivative of a constant is zero, so (F + c)' = f where c is a constant. It is
often wrongly concluded that any other antiderivative of f must be given
by adding a constant. This is true over a connected domain D, but if D is
not connected there may be a different constant over each connected
component. This follows trivially from the mean value theorem (see [5]
chapter VIII).

7. Continuity, limits and differentiation

Earlier modern approaches to the calculus took the notion of a limit
lim
x→a

f (x) = l as basic and defined a function to be continuous at a if

lim
x→a

f (x) = f(a). Recent developments such as [3] take continuity as being

basic and define lim
x→a

f (x)= l  if the function

ϕ (x) =
f (x) x ≠ a

l x = a






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is continuous at a. The excellent book [2] has a special point of view in
which the notion of limit is seen as an extension of continuity. These are
both viable approaches, especially when they are so sensitively handled.
But let us close our eyes to analysis and look at the situation in a simple
practical drawing. We find a very different picture. A freehand graph
suggests global continuity, not continuity at a point and the idea of a limit
is a non-event. The latter is because lim

x→a
f (x) requires us to consider

values of f(x) for x arbitrarily close to a but not equal to it. We cannot
draw this, we can only imagine it.

For example if f (x) = x2 − 4
x − 2

 for x≠ 2, then we must draw

f (x) =
x2 − 4
x − 2

x ≠ 2,

4 x = 2.









With a pencil marking a finite blob instead of a theoretical point we
cannot draw the points (x,x+2) on the graph where x is close to 2, without
blobbing over the value for x=2 and covering the point (2,4). Try drawing
the values for x = 2⋅001, 1⋅999, or if that accuracy can be achieved, repeat
for 2±10–n for n = 1, 2, 3, … . A physical picture will not get very far
(certainly n ≤ 11 for normal drawing implements) before the missing
point (2,4) is marked indistinguishably under the blobs representing
(2±10–n,4±10–n).

Assuming the learner has met the idea of a continuous function being
one that can be drawn freely without the pencil leaving the paper, a good
approach to the derivative is to draw the graph of the slope function at a:

s(x) = f (x) − f (a)
x − a

(x ≠ a)

If f is continuous in D, then s is continuous in D except possibly at x=a. If
the derivative f'(a) exists we cannot avoid blobbing over the point (a,f'(a))
in drawing the graph. Here we have a naturally occurring example of a
limit. Many examples put in courses to “motivate” the concept are
concocted synthetic cases which have little relevance to the student at the
time. Simply by looking at the growing spatial intuition of the learner, a
more natural sequence of events grows as follows

(i) Draw graphs.

(ii) Consider intuitive continuity – drawing freely by hand 
without removing the pencil from the paper.

(iii) Find the gradient (f(x)–f(a))/(x–a) of the graph and draw 
the graph of this gradient (x ≠ a). 
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By suitably chosen examples the graph of the gradient fills in the
“missing value” (a, f '(a)) to give the gradient of the tangent.

(iv) This is the time for

(a) Drawing the tangent y=f '(a)(x–a) +f(a) to see that it 
touches the graph at x = a.

(b) A discussion of the intuitive idea of limits and its 
relevance in formalising the notion of differentiation. 

This sequence of events can be treated intuitively in school and later
formalised at college by refining the concepts to give formal definitions.
More important, by drawing pictures it is possible to face squarely the
existence of non-differentiable, continuous functions and give a proof
about a page long that such functions exist. (See [5].)

8. Integration

This can be handled easily as a way of calculating the area under the
curve provided that we have the concepts:

(a) (uniform) continuity,

(b) completeness (preferably in terms of least upper bounds).

Both of these are covered in the approach recommended. (The policy of
stepping in feet first with completeness is again paying dividends.)
Almost of the difficulties of formal Riemann integration are avoided if
we just integrate (uniformly) continuous functions. In a more formal
course, this could be generalised to Riemann integration of bounded
functions.

It should be remarked that differentiation and integration are quite
separate processes and it is possible to cover integration before
differentiation. This is not recommended in a first calculus course
because without the process of antidifferentiation (and hence its
predecessor, differentiation) it is very arduous to actually calculate the

simplest of areas, (try x 4dx
0

1

∫  by straight summation!) In an analysis

course however this is quite a good approach to adopt because it
emphasises the independence of the two operations and underlines the
remarkable nature of the fundamental theorem of calculus which links
them together.

The fundamental theorem says that if f is continuous on [a,b] and

F(x) = f
a

x

∫ then F is differentiable and F'= f. This allows us to take a

continuous, non-differentiable function and integrate it to get a function
which is once differentiable but nowhere twice differentiable. By
repetition we find that there are functions n times differentiable
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everywhere and n+1 times differentiable nowhere. a salutary warning
against indiscriminate application of Taylor’s series .

As an application of the fundamental theorem the natural logarithm

can be introduced as log x = 1 / t dt
1

x

∫ , and the exponential unction as its

inverse. It is possible then to go on to series and power series (including
complex values to allow for eix = cosx + i sin x) and Taylor’s series for
infinitely differentiable functions. Here the “error term” in the finite
Taylor’s series must tend to zero. We have the equipment available (if we
so desire) to exhibit a function all of whose derivatives are zero, but
which is not equal to its Taylor’s series. This is

ϕ (x) =
e−1/ x2

x ≠ 0

0 x = 0







where

′ϕ (0) = ′′ϕ (0) = … = ϕ (n) (0) = … = 0
but

ϕ (x) ≠ ϕ (n) (x)
n!n=0

∞

∑ for x ≠ 0.

For any function f which has an infinite Taylor’s series, the function
f*= f+ϕ has all derivatives at the origin the same as f, but f* is not equal to
its own Taylor’s series!

Even at this stage it is possible to return to earth linking up earlier
spatial concepts by dealing with trigonometric functions. The basic
approach of the course has emphasised inaccuracy of practical
measurement, and so it is no surprise to have to look again at the
definition of trigonometric functions as ratios of the sides of a right
angled triangle. An alternative approach is possible now. In terms of
power series, which will give any desired accuracy. A vital part of the
course is then to relate this back to the standard definition to make the
total development of the calculus/analysis schema a coherent whole.

9. Conclusions

If we try to develop a long term schema for calculus/analysis by refining
the intuitive spatial concepts of the calculus into rigorous analysis, then
the following sequence of events may occur.

We can begin in school with the idea of a continuous real function as
one whose graph can be drawn freely by hand without the pencil leaving
the paper. Differentiation can be introduced by drawing the graph of the
slope function s(x) = (f(x)–f(a))/(x–a). This is a natural place to discuss
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the idea of limit. We should continue teaching calculus at school from a
geometric point of view, positively developing spatial intuition. At
college or university, (especially for future teachers) we can refine the
early geometric intuition to develop formal ideas and relate these ideas
back again. The method most in accord with spatial intuition would
involve looking at the real numbers carefully, contrasting inaccurate
drawing with abstract precision and using this physical limitation to
motivate the ideas of completeness, limit of a sequence and continuity of
a function. The notions of connectedness. and closed, bounded intervals
should be introduced from the start so that the formal idea of continuity
relates to the intuitive one. Differentiation of continuous functions can be
discussed before limits. At this stage it is possible to show how the
formal ideas of limit and continuity are really equivalent (and even limit
of a sequence is a special case). Differentiation and integration can then
be treated formally and related by the fundamental theorem. At regular
intervals these formal ideas should be related to earlier intuition. A flow
diagram for such an analysis eourse can look like the following. (Pass
degree students could omit II, IXB and soft pedal on long formal chains
of reasoning such as are found in IV, Vl):
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I intuitive properties of R,
decimals, limit of sequences,
Cauchy sequences, least upper bound, 
completeness.

II axioms for R,
(complete ordered field),
Formalisation of I.

III Drawing graphs,
continuity.

IV Formal theorems about continuity,
intermediate value theorem,
max/min theorem.

V Geometric approach to derivative of 
function.

VI Limits

VII Formal approach to 
differentiation.

IX Integration of continuous function. IXB Riemann Integration of 
continuous function.

VIII Anti-differentiation.

X Fundamental Theorem of Calculus.

XI Logarithm & Exponential.

XIV Infinite Taylor series.

XII Higher derivatives,
finite Taylor series.

XIII Series, power series.

XV Trigonometric functions as power 
series.
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