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INTRODUCTION 

THIS paper arose from a desire to apply the work of J. F. Adams ‘on the groups J(X)’ [2] 

to the case where Xis the classifying space B, of a finite group G. Since Adams’ calculations 

apply only to a finite complex X, and B, is infinite, the results could not be applied directly. 

Rather than quoting theorems and using limiting processes, the pure algebra has been iso- 

lated and independently reworked in such a way that it not only applies to the situation 

considered, but is also of general interest. This occurs in Parts I and III. The algebra used 

requires knowledge of special L-rings (which arise in K-theory and elsewhere). Part I is a 

self-contained study of these. (A special L-ring is a commutative ring together with opera- 

tions {An} having the formal properties of exterior powers). Part III contains the main alge- 

braic theorem, which readers familiar with the work of Adams [2] may recognise as essen- 

tially including a proof of his theorem ‘J’(X) = J”(X)‘. 

Arising from the applications of this theory, the principal theorem of the paper lies in 

another field of study, in the topology of group representations. Broadly speaking, a general 

type of problem that may be posed is this: given two representations E, F of a group G, 

what constraints are imposed on E and F by the existence of a given type of map between 

them which commutes with G-action? More precisely, if E, F are unitary (or orthogonal) 

representations, so that the unit spheres S(E), S(F) are preserved by G-action, under what 

conditions can there exist a G-map 4 : S(E) -+ S(F) where 4 is a diffeomorphism, homeo- 

morphism, homotopy equivalence or some other given type of map? 

Some results are known, for example de Rham [17] has shown that if 4 is a diffeo- 

morphism, then E, F must be isomorphic representations. 

In this paper, only very weak restrictions are placed on 4. The following theorem is 

proved : 

If G is ap-group (p # 2) and E is irreducible, then there exists a G-map 4 : S(E) + S(F) 

of degree prime to p if, and only if, F is conjugate to E. 

(We recall that if G is of order N, the values of the character of a complex representa- 

tion of G lie in the field Q(o) where Q is the field of rationals and w is a primitive Nth root 

of unity. Two representations are said to be conjugate if their characters are conjugate by an 

element of r,, the Galois group of Q(o) over Q). 
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Two unitary representations E, F of an arbitrary finite group G are said to be J-equiva- 

lent if there are G-maps from S(E) to S(F) and from S(F) to S(E) both of degree prime 

to the order of G. This is an equivalence relation; in fact for ap-group of odd order, it will 

follow from a result of this paper that we only need a map in one direction to ensure 

equivalence. Hence for a p-group (p # 2), irreducible representations are J-equivalent if 

and only if they are conjugate. 

More generally we will prove: 

Two representations are J-equivalent if and only if their irreducible components are 

conjugate in pairs (by possibly different elements of r,). 

In Part II, explicit G-maps are constructed between conjugate representations. In 

Part IV algebraic invariants are constructed for representations which distinguish between 

those which are not J-equivalent. 

The principal theorem is best described using the representation ring R(G) (the free 

abelian group with equivalence classes of irreducible representations of G as generators). If 

E is a representation, denote by [E] its class in R(G) and if T(G) is the subgroup consisting 

of elements [E] - [F] where E and F are J-equivalent, define J(G) = R(G)/T(G). (T(G) 

is a subgroup because J-equivalence can be shown to be an additive relation.) Let W(G) 

be the subgroup generated by the elements [E] - [crE] where c( E r,, then in standard nota- 

tion R(G),, = R(G)/W(G). 

The main theorem states J(G) = R(G),, for ap-group of odd order. 

The remainder of this introduction consists of a brief outline of the proofs involved. 

In [2] Adams calculates the group J(X), where X is a suitable topological space. J(X) is a 

quotient group of K(X), the ‘ring of complex vector bundles’ over X introduced in [6]. 

Adams proves that in certain favourable cases J(X) = J”(K(X)) where he gives a purely 

algebraic construction for J “(K(X)) as a quotient group of K(X). The connecting link with 

this paper is the result of Atiyah [3], RG) = X(B,), where B, is the classifying space of G. 

X(B,) = & K((B,),) where (B& is the n-skeleton of B,, and $) is the completion of 

R(G) with respect to a suitable topology. If we apply the construction J” to X(B,) = RG), 

we find J”(RG)) is the quotient group Rz)rN. Thus we have chosen our notation to 

suggest the formal isomorphism G = J”(R%)) = R%)rN. For p-groups R(G) is mono- 

morphically embedded in G) and it was initially with this evidence that we embarked on 

a proof of J(G) = R(G),, . 

Recalling that J(G) = R(G)/T(G), R(G)=, = R(G)/W(G), we may define an epimorphism 

v : R(G),, -+ J(G) simply by showing that W(G) c T(G). We do this in Part II. In the Adams’ 

programme, the analogous result has only been proved in certain favourable cases, but in the 

case of a large class of finite groups, includingp-groups, this carries through relatively easily. 

It is done by constructing explicit J-equivalences between conjugate representations. If 

E, F are one dimensional and F = ctE where CI E TN, N(W) = o’, then choosing complex 
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co-ordinates, S(E) and S(F) are given by complex numbers of unit modulus and a suitable 

G-map S(E) + S(F) is given by ZHZ’. To find maps for irreducible representations of 

higher dimension we use induction from one dimensional representations of some sub- 

group. Since Z-equivalence is additive, this shows W(G) c T(G) and defines the epi- 

morphism v. 

It remains to show v is monomorphic. This is considerably more difficult. First we note 

that if E : R(G) + Z is the homomorphism induced by the dimension of a representation, 

then R(G) = Z @ I(G) (as abelian groups) where Z(G) = ker c. It is easily seen that W(G) c 

T(G) c Z(G) and that v induces an epimorphism v”: Z(G),, + J”(G) where j(G) = Z(G)/T(G) 

Evidently Z(G) = Z @ J”(G) and it is sufficient to show that B is a monomorphism. 

Given a positive integer k, for each representation E, we define an algebraic invariant 

B,(E) E R(G). The invariants which arise naturally satisfy &(E @ E’) = &(E)B,(E’). If k is 

prime to the order of G, then 8, has the following important property: 

Given a map 4: S(E) + S(F) of degree Y, then there exists z E R(G) where E(Z) = Y and 

C( E rlv such that B,(F).z = B,(E).az. 

If G) is the completion of Z(G) in a suitable topology, we show 0, induces a map 

&:Z(G)-+(l +6j),-, h omomorphic from addition to multiplication. From the above 

property, it will follow that T(G) c ker 8, and so 0, induces a map 

&: Z(G)/T(G) = J”(G) + (1 + ?&, . 

For a fixed primep, let Z = & Z,, be the group of units of the p-adic integers. Then 

for a p-group G, r acts in a natural way on Z(G) via the quotient group Tlv where N =pe = 

ICI. Furthermore Z(G),, = Z(G)=. If p # 2, Z contains a dense cyclic subgroup with genera- 

tor h where h is an integer prime top satisfying hP-’ + 1 mod p2 and h mod p is a generator 

of the multiplicative group of the field Z/pZ. 

For a p-group G (p 

following commutative 

# 2), we show v”: Z(G), + j(G) is monomorphic by constructing the 

diagram with exact rows and columns: 

0 

1 
Z(G), 3 j(G) - 0 

r-0 
A few words of explanation are in order. The completion of Z(G) may be given in 

several ways (of which two are lim Z(G)/Z(G)” and lir~ Z(G)/p”Z(G)): we show these are all the 

same. The map i may be considered as the inclusion of Z(G), in its p-adic completion. The 

map (P~)~ is induced on co-invariants by a homomorphism p h:G)+l +?(G) homo- 

morphic from addition to multiplication. 
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In Part III, we introduce pr for any positive integer k prime to p and show (p&r is an - _ 
isomorphism. This is framed in a slightly more general context by introducing the notion of 
a ‘p-adic y-ring’ A. This gives a more satisfying treatment and a more general result. Exam- 

ples of a p-adic y-ring include 1zfor a finite p-group G and Z, @ I?(X), where Z, = 
Jim Z/p”Z is the ring of p-adic integers and X a suitable topological space (e.g. a finite, 
connected CW complex). For any positive integer k prime to p, pk: A + 1 + A is defined, 
homomorphic from addition to multiplication. There is a natural F-action on A and the map 
pk commutes with this action. The main algebraic theorem of Part III states that for ap-adic 
y-ring A (p # 2), ph induces isomorphisms on invariants and co-invariants, (p,,)’ : Ar --t 

(1 + -q, (P/Jr : 4 + (1 + 4.. The case p = 2 needs rather different treatment and 
this is also discussed. 

In Part IV we consider the topological properties of 0, and show that the induced map 
ok is well defined and renders the diagram commutative. The fact that i; is monomorphic 
(and hence v: R(G),. + J(G) is an isomorphism) follows by a trivial diagram chasing argu- 
ment. 

The case of unitary representations can be applied directly to give corresponding 
theorems for orthogonal representations. This is done in Part V. We have not however been 
able to determine J(G)-or the corresponding group JO(G) for orthogonal representations- 
in the case of a 2-group. 

I. SPECIAL L-RINGS 

This part of the paper may be regarded as a survey of the theory of special L-rings. It 
includes basic results for later use. A special L-ring is defined in 9 1; it is a commutative ring 
R with identity, together with a family of maps A”: R -+ R having the formal properties of 
,,+,..:,-... nr\..mm l2”“rn,l,” ,+- ,..,,:,1 7 ..:...+.T :+.,.l..rlp VIV\ +-a.. n n,-.m,.nn+ Cls..-.c.P v 0-A +l.a GALtiI‘“‘ yvwua. Lnauplr;o “I ~ymAal /“-1111p IIIb.ILIUG 11(/I, I”1 a ~“UlpxW Jpcabu * auu LI1b 

representation ring R(G) of a finite group G. 

The free &ring on one generator is introduced in 9 2. This is the smallest l-ring contain- 
ing an element s1 such that (P(s,)},,, are algebraically independent. Using this in $3 we 
show that the only natural operations on the category of special I-rings are polynomials in 
the {An}. An element x in a special L-ring is said to be n-dimensional if Lr(x) = 0 for r > II 
and p(x) # 0. We show that a natural operation is uniquely given by its action on a sum of 
one dimensional elements (verification principle). 8 Q 4,5 are devoted to the discussion of 
certain natural operations {y”} and {t+Y}. The {y”} define a filtration on a A-ring and the 
{t,Y} are ring homomorphisms. 

In 0 6 we show that an n-dimensional element of a special I-ring may be written as a 
sum of one dimensional elements in an extension ring (splitting principle). A certain type of 
natural construction z which is only defined on finite dimensional elements is explained in 
$7. It associates with each finite dimensional element x E R an element z(x) E R such that 
z(x + y) = r(x)zb) and is called a natural exponential map. The Bott cannibalistic 
class 8, is a natural exponential map given for a one dimensional element x by 
B,(x)=l+x+*** . + xkel It will be used in the proof of the main theorem in this paper. 
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$1. PRELmlNARlES 

After Grothendieck [12], define a I-ring to be a commutative ring R with identity and a 

countable set of maps P: R + R such that for all x, y E R 

(1) P(x) = 1 

(2) n’(x) = x 

(3) n”(x + y) = x:=0 X(x)P_‘(y) 

If t is an indeterminate, for x E R define: 

(4) n,(x) = C”kO W)t” 
then the relations (l), (3) show that Iz, is a homomorphism from the additive group of R into 

the multiplicative group 1 + R[[t]]‘, of formal power series in t with constant term 1, i.e. 

(5) A,(x + Y) = WV,(Y) 
The relation (2) states that 1, is a right inverse of the homomorphism 1 + En z I x, t ” H x1, 

in particular 1, is a monomorphism. 

The ring Z of integers may be given a I-structure by defining n,(l) = 1 + Cm, t” 
where m, = 1. The ‘canonical ’ A-structure is given by A,( 1) = 1 + t, then by (5) 

l,(m) = (1 + t)” and X’(m) = (y). 

Other examples of A-rings are Z&(X) for a compact G-space X, where G is a compact 

Lie group [19] (which includes the case K(X) when G is trivial [4] [6] and R(G), the complex 

representation ring of a finite group G [3]), and K’(A) for a commutative ring A with 

identity [S]. In these examples the I-structure is induced by exterior powers. 

A A-homomorphism is a ring homomorphism commuting with the I-operations; an 

augmented I-ring is a R-ring R together with a I-homomorphism E: R -+ Z (where Z has the 

canonical I-structure). If X is a G-space and x0 E X, then the inclusion (1, {x0}) -+ (G, X) is 

an eauivariant map which induces the augmentation i! : I&(X1 -+ Kflx,I1 = Z (it assigns to v-mm ~~ “x-m I \I ~“I, -: \m 
each G-bundle over X the dimension of the fibre at x0). In particular the representation ring 

R(G) is augmented E: R(G) + Z by the dimension of a representation. Choose a prime ideal 

b in the ring A then the canonical map j: A + A, induces the augmentation ji : K(A) + 

ag = z, 191. 
The notion of a I-ideal and I-subring is evident and the usual elementary theorems may 

be proved, for example the kernel of a &homomorphism is a I-ideal. In particular if R is 

augmented and Z = ker E, then Z is a I-ideal. 

If x is an element of a &ring and n,(x) is a polynomial of degree n in t, then we say x is 

finite dimensional and its dimension is n. Not all elements of a I-ring are finite dimensional 

but we say the ring R is finite dimensional if every element in R is a difference of such ele- 

ments. The examples given are all finite dimensional and the dimension corresponds to the 

usual definition (fibre dimension). It is easy to show that if R is augmented and x E R, then 

for x finite dimensional, 0 I E(X) I dim x. The case of X disconnected with base point 

shows that in some l-rings it is possible for E(X) to take any value in the range 0 I E(X) I 

dim x. Since E is a I-homomorphism, this implies that, in general, A-homomorphisms need 

not preserve dimension. 



258 M. F. ATIYAH and D. 0. TALL 

We may define a A-structure on 1 + A[[t]]’ for any commutative ring A with unit. We 
give the definition in terms of universal polynomials. 

Let 5 19 ***, kpYl, ***, qr be indeterminates and let si, Ci be the ith elementary sym- 
metric functions in tl, . . . , t4 and vi, . . . , qr respectively. Define: 

(6) J’,,(si,...,s,;ai,..., g,,) is the coefficient of t n in Hi, j (1 + hi q j t ) 

(7) P”,m(%, *.*, s,,,,,) is the coefficient of t * in 

I,.T1l,iL1 + ti, *” limt) 

Evidently P,, is a polynomial of weight II in the {Si) and also in the {oil, P,,, m is of weight 
nm in the {sJ. In order that none of the variables involved in (6), (7) are identically zero, we 
must choose r 2 n, q 2 n in (6) and q 2 nm in (7). In any case, from the usual theory of 
symmetric functions [16], the identities are true for all values of q, r, m, n which are non- 
negative. Both P,, and P,,, m have integer coefficients and so may be defined in any commu- 
tative ring. 

Define a I-ring structure on 1 + A[[t]]’ by 

(8) ‘addition ’ is multiplication of power series 

(9) ‘ multiplication’ is given by 

(l+~u”t”)~(l+~b,t”)=l+~P”(a,,...,a,;b,,...,b,)t” 

(10) Arn(l +p”t”) = 1 +CP,,,(a,, . . . . u,,)t” 

LEMMA 1.1. 1 + A[[t]] ’ is a A-ring with the above structure. 

Proof. We need only show that the universal polynomials satisfy certain basic identities. 
For example, the fact that 0 is associative is equivalent to the identity: 

(11) P,(P&l ; b,), . . . > J’n(q, . . . , a, ; b,, . . . , bn>; ~1, . . . , cn> 
=P&, . . . . a, ; P,(b,; cl), . . ., P,(b,, . . .v h, ; ~1, . . ., 4) 

If t 1, ***, &,51, -..,flr, Cl, ***9 is are indeterminates where q, r, s 2 n then the first n 

elementary symmetric functions in C1, . . . , 5,) in u],, . . . , qr and in &, . . . , l, are algebraically 

independent ([16] 9 26). 

Comparing coefficients of t” in 

~(1+rirjt)oI1(1+5kt)=II(1+~i~j~kt)=II(1+5it)on<1+rjrkt) 

we see that (11) is indeed an identity. Similarly the other identities are satisfied. 1 is the 

‘zero’ and 1 + t is the ‘identity’. 

Definition 1.2. A I-ring R is said to be special if 

2,: R + 1 + R[[t]]’ is a &homomorphism. 

In effect a special A-ring satisfies (l)-(3) and also 
(12) n,(l) = 1 + t or A”(l) = 0, n > 1 (2, preserves identities) 
(13) P(xy) = P,(Al(x), . . . , A”(x); ayY>, . . . , Ayy)) 

(14) P(nn(x)) = Pm, .(A’(x), . . . , nyx)) 

(12) is a special case of (14) where IZ = 0. Note that (12) ensures that the only special A- 
structure on Z is given by the canonical structure. 
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Every special A-ring R contains a A-subring isomorphic to Z for if 1 E R had finite addi- 

tive order, then 

1 = A,(O) = Il,(m.l) = (1 + t)” 

and comparing coefficients oft * we derive a contradiction. Not all J-rings may be augmented 

(for example the rationals where At(r) = (1 + t)‘), but if the special l-ring R is augmented, 

then any element of R may be written uniquely as x = E(X) + (x - E(X)) where E(X) E Z, 

x - E(X) E I and so R = Z @ I considered as abelian groups. The converse is also true and so : 

PROPOSITION 1.3. R is an augmented special A-ring if and only if there is a i-ideal such 

that R = Z @ I (considered as abelian groups). I = ker E, where E: R 4 Z is the augmentation. 

THEOREM 1.4 (Grothendieck). For any commutative ring A with identity, 1 + A[[t]]+ 

is a special A-ring. 

ProoJ: We have only to verify (12)-(14) in 1 + A[[t]]‘. Evidently Am(l + at) = 1 for 

m > 1 using the universal polynomial P,, m and so elements of the form 1 + at are one dimen- 

sional, (1 is the ‘zero ’ in 1 + A[[t]]‘). In particular 1 + t is one dimensional, which gives 

(12). To prove (13), (14) as in lemma 1.1 we have universal polynomial formulae to prove. 

But in any J-ring which satisfies the property that the product of one dimensional elements is 

one dimensional, if x = C xi, y = C yj are sums of one dimensional elements, 

UxY) = n,(C xiYj) = fl C1 + xiYj t, = At(x> ’ ilt(Y) 
and similarly &(2”(x)) = A”(,$(x)), and so x, y satisfy (13), (14). 

In the L-ring 1 + Z[tl, . . . , &, yll, . . . , q,][[t]] +, the product of one dimensional ele- 

ments is one dimensional, for (1 + at) 0 (1 + bt) = 1 + abt. Apply the previous remark to 

x = n (1 + tit), y = n (1 + yj t) and by the same argument as in lemma 1.1, (13), (14) are 

universally satisfied. 

It is easy to see that AH 1 + A[[t]] + is a covariant functor from commutative rings 

with unit and ring homomorphisms to special A-rings and i-homomorphisms. It even pre- 

serves monomorphisms and epimorphisms. Furthermore since i, is a monomorphism, every 

special A-ring is a A-subring of a special A-ring of the form 1 + A[[t]]‘. 

The A-structure on 1 + A[[t]]’ may be given in a more sophisticated manner by 

(15) The structure is functorial in A 

(16) ‘ addition ’ is power series multiplication 

(17) ‘multiplication’ satisfies (1 + at) 0 (1 + bt) = 1 + abt 

(18) K(l + at) = 1 for n > 1 

(19) the {An} satisfy (l)-(3) 

The examples of A-rings given earlier are special. We give proofs for KG(X) and R(G) 

since they will concern us later in this paper. 

THEOREM 1.5. (i) For a compact G-space X where G is a compact Lie group, the 

Grothendieck group of complex G-vector bundles is a special I-ring. 

(ii) The complex representation ring R(G) of aJinite group G is a special A-ring. 

Proof. Of course (ii) is a special case of (i) but we give a separate proof at a more 

elementary level. 
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(i) follows by the G-splitting principle of [19]. A G-vector bundle is written as a sum of 
one dimensional elements in some extension &ring, which satisfies the property that the 
product of one dimensional elements is one dimensional. This demonstrates that (13), (14) 
are satisfied by the isomorphism classes of G-vector bundles and it is trivial to extend the 
proof to virtual G-vector bundles. 

(ii) follows by identifying R(G) with the ring of complex characters as in [3], then 
R(G)[[t]] is a subring of the ring of all functions G --+ C[[t]], For any complex represen- 
tation p of G, 1,(p) is the function given by gt+ det(1 + tp(g)). R(G) is special as a result of 
the formulae : 

de@ + dd 0 &dt) = dW + ddt) 0 deW + &dt) 
det(1 + A”(P(g))t) = det(A”(1 + p(g)t)). 

By restricting to the cyclic subgroup generated by g, we may assume the representations con- 
cerned are diagonal and then the above formulae are trivial. 

$2. THF. FREE A-RING ON ONE GENERATOR 

This is a special L-ring U generated (as a L-ring) by a single element s,, such that the 
elements {A”(~i))~~i are algebraically independent. U will be a I-subring of a special i- 
ring R in which si may be written as the formal sum of an infinite number of one dimensional 
elements. If we write s,, = P(sl), in effect we are setting up the formal framework in 
which we may factorise the power series &(s,) = 1 + c ntl s, t” into an infinite product 

nnrl(l +5,,t) wheres, =c 5,. 

U will have the universal property that if R is a special A-ring and x E R, then there is a 
I-homomorphism u, : U-B R in which z&J = X’(x). 

If {R,} is an inverse system of special I-rings with I-homomorphisms 4:: R, + R, for 
r 2 s, then ~JIJ R, is a special I-ring in a canonical manner such that the canonical homo- 

r 
morphisms 4, : jir~ R, --) R, are &homomorphisms. 

If sz, = Z[&, . . . , <,I for r 2 0 where A,(&) = 1 + 5, t and 

then n = liar R, is a special l-ring. 

We may consider R to be the ring of those power series in the {ti} which become poly- 
nomials in the n variables rr, . . . , r, when we put 5, = 0 for r > n. The canonical map 
4, : R -P $2, is given by this process and plainly $,“&, = 4, for m 2 n. If s,(ti, . . . , &) is the 
nth elementary symmetric function in tl, . . . , t,, let s,, = hm s,,(tl, . . . , l,) E Cl, then 
Iz”(s,) = s,, . The (8,) are algebraically independent, for iff(s,, . . . , s,) = 0 where f is a poly- 
nomial, then 4,(f(.si, . . . , s,)) =f(s,(tl, . . . , c,), . . . , sn(tl, . . . , 5,)) = 0 and this impliesfis 
the zero polynomial ([I61 § 26). Let U be the smallest I-subring of R containing sl, then 
S, = X’(s,) E U and so Z[s,, . . . , s,, . . .], the ring of polynomials in the {s,,}, is contained in 
U. Using the axioms for a special I-ring, we see Z[sl, . . . , s,, . . .] is closed under the A- 
operations and so U = Z[s,, . . . , s,, . . .J 
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If R is any special I-ring and x E R, define u, . . U + R by z&J = P(x), then using the 
universal polynomials P, and P,, m, it is easy to see that U, is a I-homomorphism. The image 
of U, is the I-subring generated by x (that is the smallest ksubring containing x). 

$3. NATURAL OPERATIONS ON SPECIAL X-RINGS AND THE VERIFICATION PRINCIPLE 

In this section we characterize the ring of natural operations and show a natural opera- 
tion is a polynomial in the A-operations. It is uniquely defined by its action on a (finite) sum 
of one dimensional elements. 

Let 5 be the category of special l-rings and let Op _S be the ring of natural operations 
on _S, i.e. if ,U E Op & for each A E _S there is a map (not necessarily a homomorphism), 
,u~ : A -+ A such that for a J-homomorphism 4 : A + B, cjpA = pB 4. Addition and multipli- 
cation of operations are calculated on values, e.g. (pLA + vA)(u) = ~~(a) -t vA(u) for a E A, 
p, v E Op _S. To simplify the notation, we often omit the suffix A in pLa. 

If Z[P, . . . ) /I , . . .] is the ring of polynomials in the I-operations, there is a well- 
defined homomorphism a: Z[A’, . . . , I”, . . .] + Op _S defined by cQ-(J+‘, . . . , A”))(x) = 

W(x), * * . , l”(x)), where x is an element of a special I-ring. 

PROPOSITION 3.1. a is an isomorphism, i.e. every natural operation is (uniquely) a poly- 
nomial in the I-operations. 

Proof. U E _S so if a(f(n’, . . . , A”)) = 0, then c~(f(n’, . . . , P))(si) =f(s,, . . . , s,) = 0 and 
so f is the zero polynomial, since the {si} are algebraically independent. So c1 is a mono- 
morphism. 

If p E Op ,S, then &r) E U and p(sl) =f(sr, . . . , s,,) for some polynomial J If R E _S 
and x E R, by Theorem 2.1, there is a I-homomorphism u, : Cl+ R where u,(s,) = P(x). 
Since p is natural, it commutes with U, and so 

P(X) = PKC(Sl) 

= UXY (s1) 

=u,f(sr, . . ..s.) 

=f(P(x), . . . ) l”(x)) 

= a(f(A’, . . . , A”))(x) 

which implies czcf(ll, . . . , A”)) = p and CI is an epimorphism. 

If ,u E Op S and we wish to show p =f(lzi, . . . , A”), it is sufficient to check the identity 
operating on s1 E U, that is to check p(sl) =f(sl, . . . , s,,), which may be calculated in Q. 

By the universal property of an inverse limit, since the natural operations commute 
with the canonical maps 4, : Sz + Cl,, it is sufficient to check the formula in each !3, = 

zrg r, . . . , &I, i.e. it is sufficient to show 

P(51 + *** + 53 =f(s,(& . . * L), * *. 7 %(L *. * 7 5,)) 

This is a vital property of special I-rings which we write as: 



262 M. F. ATIYAH and D. 0. TALL 

THEOREM 3.2. (verification principle). If p E Op _S, then p is a polynomial in the A-opera- 
tionsandp =f(A1, . . . . A”) if, and only if, the identity holds operating on a sum t1 + a.. + 5, of 

one dimensional elements, for all r 2 0. 

We may also consider a verification principle for more than one variable. The notion of 
a natural map in two variables is evident; we denote by Op, _S the ring of such maps and 
so if v E Op, _S and A is a special I-ring, there is a map vA: A x A + A such that for a A- 
homomorphism 4: A -+ B, then +vA = vB(q5 x 4). 

If f is a polynomial in &I, . . . , AIn, A.,l, . . . , jlzm, f defines a map A x A -_) A by 
f(,$‘, . . . ,A,“; Azl, . . . , A,“‘)(x, y) =f(l’(x), . . . , E!‘(x); A’(y), . . . , A”‘(y)). This defines a ho- 
momorphism /I: ZIAll, . . . , Al”, . . .; Azl, . . . , AZ”‘, . . .] + Op, 8. 

PROPOSITION 3.3. fl is an isomorphism. 

Proof. Construct a free A-ring U, on two generators sr, fsl analogous to U. Let Rz = 

lim ZC&, - * -, 5,) ?I, * * - 3 q,] where the (ti} and {qj} are indeterminates and let s,, = 
q.r 

lim s,,(&, . . . , t,), cn = lim q,hl, . . . , vlJ where sn(tl, . . . , 5,) and o,(q,, . . . , q,) are the 

n:h elementary symmetric functions. The free A-ring U, on two generators is Z[s,, . . . , 
S “, **-, *~t,...,~‘m, . . .] where the {si} and {ai} are algebraically independent and n”(sl) = s, , 

P(oJ = 6,. U, satisfies the obvious universal property and 3.3 follows by analogy with 3.1. 

PROPOSITION 3.4. (verification principle for two variables). Ifp E Op, _S, ,u = f&l, . . . , 

A,“; 121, . . .) A,“‘) if and only if the identity holds operating on a pair tl + * * * + &, 

?l + . * * f q,. of sums of one dimensional elements for all q, r 2 0. 

Proof. This is analogous to 3.2. 

$4. THE y-OPERATIONS 

After Grothendieck, define the Y-operations on a special A-ring by 

(1) y”(x) = n”(x + n - 1) 
If Y,(x) = 1 + xnz 1 y"(x)t “, then 

(2) Y,(X) = &,(1-t)(X), n,(x) = YS/(l +,(x) 
(3) Y,(X + Y) = y,(x)?%(Y), y”(x + Y) = c:=o y’(x)y”_‘(Y) 
The y-operations satisfy certain universal polynomial formulae 

(4) y”(xY) = Q.(Y ‘(x), . . -3 y”(x) ; Y ‘(~93 . . -3 r”ti)) 
(5) Y”(Y”‘(~)) = Q,, .(~‘(x), . . .y ym”(x)) 
which may be calculated by substitution into the &formulae. 

We also have 

(6) Y’(X) = 1 
(7) Y’(X) = x 

(8) y,(m) = (1 + &)m = (1 - t)-” 

(9) n,(x) = 1 + xt implies y,(x - 1) = 1 + (x - 1)t 
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(9) states that if x is one-dimensional, x - 1 is of y-dimension one (or zero), more generally 
if x is n-dimensional, x - n is of y-dimension at most n. 

Suppose R is an augmented A-ring with augmentation E: R --f Z and augmentation ideal 
Z = ker E. 

Define the y-filtration by: 
(10) R, is the additive group generated by monomials y”*(q) . . . y”(q) where ai E Z and 
1 ?li 2 n. 

PROPOSITION 4.1. (i) R,,, . R, c R,+, 
(ii) RO = R, R, = Z 

(iii) R, is a A-idealfor n 2 1. 

Proof. (i) is trivial and (ii) follows from (6) (7). 

From proposition 1.3, R = Z @ Z = Z @ R,, and so R, is certainly an ideal. To show R, 
is a A-ideal, it is sufficient to show X(y”(x)) E R, for x E 1. 

Ar(ym(x)) = Ar(Am(x + m - 1)) = P,, ,(A’(x + m - l), . . . , Arm(x + m - 1)). NOW P,, Jsl, 
. . . , s,,) is the coefficient of t’ in n (1 + ti, . . . ci,f) where si is the ith elementary sym- 
metric function in the (ti}. Put ci = 0 for i 2 m, then by inspection, P,., Jsi, . . ., &n--l, 090, 
. . . . 0) =0 and so Pr,,,(sl, . . . . sr,) is a sum of monomials each containing a term si for 
i 2 m. Thus 2(?“(x)) is a sum of monomials each a multiple of some I’(x + m - 1) for i 2 m. 
It remains to show that I’(x + m - 1) E R, for i 2 m. Put s = i- m, then 

I’(x + m - 1) = Am+‘(x + m - 1) 

=Y m+s(x + m - 1 - m - s + 1) 

= ym+s(x - s) 
Wl+s 

=&y m+“-r(x)y’(-s) by (3) 

Sincey’(-s)=Oforr>s>Oby@), 

i’(x + m - 1) =~~Oy”‘“-‘(x)y’( - s) E R, . 

Definition 4.2. Z is said to be a special y-ring if it is a commutative ring (without 
identity) with operations (7’) such that there is an augmented special A-ring R with Z as 
kernel of the augmentation. 

If we are given a special y-ring Z, we may recover the special I-ring R by adjoining an 
identity to Z in the usual manner. R = Z @I Z as additive abelian groups and E: R --t Z is 
given by e(n -t a) = n for n E Z, a E Z. 

For a special y-ring Z, the y-filtration is given as in (IO), (1 l), Z. is the ideal generated by 
monomials ~“~(a~), . . . , ~“~‘(a,) where Ui E Z, C ni 2 n. 

From Proposition 4.1, we have 

PROPOSITION 4.3. (i) Z, . Z, c Zm+n 
(ii) ZI = Z 

(iii) Z, is a y-ideal, n 2 1 (i.e. Z,, is closed under the y-operations). 
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If we now refer back to 0 6 2,3, we have propositions for special y-rings analogous to those 
for special &rings. 

Let W, = Z[x,, . . . , x,]’ be the ideal of polynomials with zero constant term in the 
indeterminates {xi}, where y,(x,) = 1 + x,,t. Define for r 2 s, 

then W = lim W, is a special y-ring. 

If r&(x1, . ..) x,.) is the nth elementary symmetric function in the {xi} and o, = 

bU”(X,,..., x,) E W, then y”(a,) = rr, . Let V be the smallest y-subring containing cl, then 

V = Z[a,, . . . ) 0,) . . .I+, the ring of polynomials in the {c,,n) with zero constant term. V is 

the free y-ring on the generator c1 since the {q,} are algebraically independent. It satisfies 
the following universal property: 

PROPOSITION 4.4. If Z is a y-ring and x E I, there is a unique y-homomorphism v, : V + Z 

in which ~,(a,) = y”(x). 

We also have the following proposition analogous to 3.2: 

PROPOSITION 4.5. (verification principle for special y-rings). Every natural operation p 
on the category of special y-rings is a polynomial in the y-operations with zero constant term. 

CL =f(yl, **-, y”) if and only if the identity hoIds operating on a sum x1 + ... + x, of ele- 
ments of y-dimension one, for all r 2 0. 

A similar proposition holds for natural operations in more than one variable. 

$5. THE ADAMS OPERATIONS 

Let R be a special &ring, x E R, define t+V’: R + R for n > 1 by 

(1) J/-Lx> = t $ CUx>ll~t(x> where M4 = El ti”W” . 
t,V’ is a natural operation and 
(2) J/“(x) = v,(n’(x), . . ., A.“(x)) where v,(si, . . . , sJ = tl” + -.. + 5,” 

is the nth Newton polynomial, Si being the ith elementary symmetric function in the {5j}. 

If x is one dimensional, $“(x) = x” and for a sum of one dimensional elements 

a, + -es +a,,$“(a,+~~~+a,)=a,“+~~~+a,“. 

It is well known in K-theory that the $” are ring homomorphisms, [l]; we prove this 
formally by appealing to the verification principle. 

PROPOSITION 5.1. t,V is a I-homomorphism. 

Proof. 1I/“(c 5i + C Ilj) = C 5: + C Vr = V(C ti) + V(C Vj) 

G”(C <ix ?j) =V(C ti Vj> =C(tivlj)l =C ti”C Vr =V(C ti)$“(C tlj) 

V(Am(C ti)) = V(sm(519 + * * 3 WI = sm(51”Y *a * 3 5,“) = nm(C t,“) = nm($Q ti)) 

PROPOSITION 5.2. 11/“$” = t+V” = $?/I” 

$“(x) 3 xpr mod p (p prime) 
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Proof. Immediate from the verification principle. 

PROPOSITION 5.3. Zf Z is a special y-ring, x E Z. then $“(x) - k”x E Z,,, 1 (n 2 1). 

Proof. It is sufficient to show IC/“(y”(u)) - k”‘y”(u) E Z,+l for a E Z, since $k is a 
y-homomorphism. 

If 7,(x,) = 1 + XJ then ok = (1 + Xi)k - 1. 

$9” - k”y” is a natural operation and operating on xi + * * . + x,, 

lfbk(y”(xl + *** + xJ) - k”y”(x, + . * * + x,) 

= II/k(~mh . . . , xr)) - kmdq, . . . , x,) 

= a,,,((1 + ~r)~ - 1, . . . , (1 + x,)” - 1) - kmoJxl, . . . , x,) 

This is a symmetric polynomial of degree 2 m + 1; by the verification principle for special 
y-rings, this gives the result. 

PROPOSITION 5.4. x E Z, = $k(~) + (- I)” klk(x) E Z.+l (n 2 1). 

Proof. From the property of Newton’s polynomials, 

l+@(X) - +“-‘(x)P(x) + * * * + (- l)k-‘$‘(X)A”-‘(X) + (- l)kkP(X) = 0. 

Nowforu~Z,,$“(u)~Z,,,J.‘(u)~Z,forr~l. 

$“(x) + (- I)kkAk(x) E I,, c Z,,,, for 12 2 1. 

PROPOSITION 5.5. XE Z,, +IZk(x) + (- 1)&k”-‘xo Z,+l (n 2 1). 

Proof. For a, b E Z,, , ub E Z2,, c I,,+ 1 and so 1” is a ring homomorphism on Z,/Z.+i, 
It is sufficient to show Ak(y”l(u,) *** ynr(u,)) + (- l)kk”-ly”l(~,) - * * y”r(~J E Z,,,, for 
a,, . . . , a, E Z, C~i = n. This is a natural operation in the r variables a,, . . . , a, which we 
denote by p(ui, . . . , a,). From 5.3, 5.4, kp(u,, . . . , a,) E Z,,.l. There is no torsion in the 
free y-ring on r generators and since p is determined by its action in this y-ring, we have 

Z&r, ***,%)EZn+1. 

Since a special y-ring Z is in particular an additive abelian group, the p-adic topology 
on Z is well defined, with a fundamental system of neighbourhoods of zero given by {P”Z},~ 0. 

The y-topology on Z is given by the y-filtration. 

PROPOSITION 5.6. Zf the y-topology is finer than the p-udic topology on Z, then writing 
+“(a) = $(k, a), $ is a continuous function from Z f x Z + Z in the p-udic topology (where 2’ 
are the positive integers). 

Prooj A fundamental system of neighbourhoods of zero for the p-adic topology may 
also be taken as {p”Z + Zm}nzI. We show that given an integer N 2 1, 3 M 2 0 such that 
pM 1 s implies 

$(k+s,x)-$(k,x)+‘Z+ZN. 

Suppose x1 + . - * + x, is a sum of elements of y-dimension one, then 

+k +“(Cxi) - I1/“(Cxi) 

= C((1 + Xi)'+' - 1) - C((1 + Xi)' - 1) 

=x(1 + Xi)k((l + Xi)s - 1) 
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Choose M = 2N, then if pM ( s, it is easy to see 

$“+“(CXi) - $“(CXi) =pNSi + SN 

where Sj is a symmetric function of weight 2j in the (xi} for j = 1, N. By the verification 
principle, $k+S(~) - i+P(.x) E pNZ + Z, for x E I. 

This shows +(k, x) is (uniformly) continuous in the first variable in the p-adic topology: 
it is certainly continuous in the second variable since $” is a ring homomorphism. This 
makes it continuous in the two variables. 

$6. THE SPLITTING PRINCIPLE 

The purpose of this section is to prove the following theorem: 

THEOREM 6.1 (splitting principle). Zf R is a special A-ring and x is an n-dimensional 
element of R, then there is a special A-ring R’ 3 R such that x = x1 + * - * + x, is the sum of 
n one-dimensional elements in R’. Furthermore if R is augmented by E: R + Z and E(X) = m, 
then E may be extended to R’ such that E(x,) 

= 0 ( 

1 l<rSm 

m<rln 

Theorem 6.1 is analogous to the splitting principle for a vector bundle over a compact 
space. As an immediate corollary, if R is finite dimensional (i.e. every element of R is the 
difference of finite dimensional elements), using Zorn’s Lemma, R may be embedded in a 
A-ring S in which every element may be decomposed into one dimensional elements. The 
theorem is the result of a series of lemmas. 

LEMMA 6.2. The tensor product of special l-rings A, B is a special n-ring in a canonical 
way such that the maps A --t A 0 B, B + A 0 B are I-homomorphisms. Zf A, B are augmented, 
A Q B is augmented in the obvious way. 

Proof. If F is a covariant functor on the category of commutative rings with identity, 
since A 0 B is the coproduct of A, B, there is a unique natural map F(A) @ F(B) -+ F(A 8 B), 
Hence the functor AM 1 + A[[t]]+ gives rise to the natural map 

a:(l+A[[t]]+)O(l+B[[t]])+-+l+AOB[[t]]’. 

Given 2,‘: A -+ 1 + A[[t]]“, 1,“: B-+l+B[[t]]+, define 1,: A@B+l+A@B[[t]]‘, 
by 1, = &J.,’ 0 A,“), then A, is a ring homomorphism such that J,‘(x) = x and so A 0 B is a 
L-ring. A calculation with the universal polynomials shows Ar is a &homomorphism and 
so A @ B is special. 

If A, B are augmented E’: A +Z, 8”: B -+Z, then A 0 B is augmented by E = E’ 8 E” 

LEMMA 6.3. Zf R is a special I-ring and 5 is an indeterminate, then R[t] is a special 
l-ring where n,(t) = 1 + lt. [f R is augmented, R[5] may be augmented by ~(5) = 0 or 1. 

Proof. R[t] = R @ Z[<] where Z[t] is a special I-ring given by A,(r) = 1 + (t and 
augmented in two possible ways by ~(5) = 0 or 1. 

LEMMA 6.4. Zf S is a special n-ring and Z an ideal generated by{zj}j,J , then Z is a I-ideal 
@“and only tf nm(zj) E Z for m 2 1, j E J. 
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Proof. If n”(Zj) E Z for m 2 1, then for u E S, 

n”(UZj) = P,(~‘(U), . . . ) ~(a); n’(Zj), . . . ) n”(Zj)) 

and, since P, is of weight n in the (P(zj)}, A”(uz~)EZ for n 2 1. Since any z E Z is a 

finite sum z = C a,Zjp where a, E S, .j, E J, using therelation A”(x + r) = C;=0 Yei A’(j), 

this implies P(z) E Z for any z E Z and so Z is a A-ideal. The converse is trivial. 

Using the notation of lemma 6.3, we have 

LEMMA 6.5. Zf x E R, dim x = n, then in R[<], the principal ideal Z generated by 
<“-n’(x)5”-‘+ . . . + (- l)“?(x) is a A-ideal. 

Proof. Considering A,(x - 5) = (I + A’(x)t + * . . + n”(x)t”)(l + &)-I, we see that for 

r 2 0, 
(1) n”+‘(x-+(-1)“+‘5’(~“-n1(x)r”-‘-t***+(-l)”~(x)), 

in particular An(x - 5) = (- l)“(t” - A’(x)r-’ + . * * + (- l)“R(x)) and so Z is also gen- 

erated by 2(x - 5). 

To show Z is a A-ideal, from 6.4, we need only show Am(An(x - 5)) E Z, m 2 1. From (l), 

A”+‘(x - 4) E I, r 2 0, but A”‘(A”(x - r)) = P,,,(A.‘(x - c), . . . , jlm”(x - 5)) and as was 

demonstrated in the proof of 4.1, P,,,(A’(x - t), . . . , ;im”(x - 5)) is a sum of monomials 

each a multiple of some A”+‘(x - 5) E I. 

LEMMA 6.6 Zf x E R, dim x = n, then there is a special A-ring R[xl] 3 R where 

dimx,=l,dim(x-x,)=n-1. 

Zf R is augmented and E(X) = m, then we may augment R[xl] by 

4x1) = ( 1, m>O 
0 , m=O 

and then 

&(X - Xi) = ( m-l, m>O 
o 

, m=O 

Proof. From 6.5, since Z is a A-ideal, R[5]/Z is a special R-ring. Trivially, if x1 is the 

image of 5 in R[t]/Z, R[t]/Z = R[x,] where x1 satisfies 

x1* -A’(x)x;-l+*.*+(-l)“n”(x)=o. 

Since A”+,(, - 5) E Z from (1) above, A”+‘(x - xi) = 0 in R[xl], but An”-l(x - 5) $ Z and so 

A”-‘(x - xl) # 0 showing dim(x - x1) = n - 1. 

If R is augmented by E: R + Z, then R[5] may be augmented either by ~(5) = 1 or by 

s(t) = 0. If s(Z) = 0, then R[t]/Z is naturally augmented by E(Z + I) = E(Z) for z E R[l]. 
If E(X) = m, then E(~~(x)) = (r). For m > 0, choose ~(5) = 1 then 

E(5” - Ai(x) -I- . . - +(-l)“n”(x))=l-(;I)+(;l)+*~~+(-l)m=(l-I)m=O 

and this induces the augmentation on R[xI] given by E(X) = 1. If E(X) = 0, choose s(r) = 0, 

then E(Y - A’(x)~“-’ + *. . + (- l)“A’(x)) = 0 and in this case E(x,) = 0. 

This completes the proof. 

By downward induction on n, theorem 6.1 is completed with R c REX,, . . . , x,,] where 

each x, is one dimensional and x = xi + . * - + x,, . 
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$7. NATURAL EXPONSNTIAZ, MAPS AND THE BOTT CANNIBALISTIC CLASS 8k 

A natural exponential map r is defined on finite dimensional elements and satisfies 
r(x + y) = z(x)z(y). It is given uniquely when its value is known on one dimensional ele- 
ments. We are interested in the Bott cannibalistic class 0, which is given by 0,(x) = 1 + 

X+ - - - + 2-l if x is one dimensional. 

If R is a special A-ring, the set of finite dimensional elements is an additive semigroup 
which we denote by P(R) (it is in fact a R-semiring). A natural exponential map z on the 
category of special I-rings is defined to be a map r s: P(R) + R for each special A-ring R 
such that: 

(1) r& + Y) = r&MY) x, Y E P(R) 
(2) If 4 : R -+ S is a ,&homomorphism then z& = z q!~~. 

If A is the category of augmented special A-rings and I-homomorphisms which com- 
mute with augmentation, then a natural exponential map of degree k on A is a map 
rA: P(A) + A, defined for each augmented special A-ring A, such that: 

(3) r,4(a + b) = r,&)r_@) a, b E P(A) 
(4) If 4 : A + B is a I-homomorphism commuting with augmentation then zg 4 = $rA 
(5) E(~~(x)) = kECX). 

We will often omit the suffix in tR to simplify the notation. 

PROPOSITION 7.1. Zf TV, t2 are natural exponential maps which agree on all one dimen- 
sional elements, they agree everywhere. 

Proof. Use the splitting principle (Theorem 6.1) 

We now give a definition of the Bott cannibalistic class 8,. Let R be any special L-ring 
and adjoin a one dimensional indeterminate 4. If dim x = n, the ideal Z(x) in R[EJ generated 
by L(& x) = Y - Ai(x)’ + . *. + (- l)“X’(x) is a I-ideal by lemma 6.5. Any element of 
the ideal Z(x) may be written uniquely asf(t)L(c, x) wheref([) E R[<]. 

Define &(L x) E N51 by 
(6) hit, X)m, X> = tik(m, X)) 

and define e,(x) by 

(7) e,(x) = ek(l, x). 

PROPOSITION 7.2. ok is a natural map of degree k such that e,(a) = 1 + a + - + * + ak-’ 

for dim a = 1. 

Proof. Obviously L(& x + y) = L(<, x)L(t, y) and so from (6), (7) 

ek(x + Y) = ek(x)ekti)9 

i.e. ok is exponential. Clearly & is a natural and, if dim a = 1, L(<, a) = t - a, 
~k(~-a)=~k-ak,andso8k(~,a)=~k-1+~k-2a+...+ak-1giving 

e,(a) = 1 + a + -0. + ak-l. 

If &(a) = 1, &(&(a)) = k and if &(a) = 0, &(0,(a)) = 1. Hence using the splitting principle, 
0, is of degree k. 
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Recalling Z(x) is the ideal in R[t] generated by L(& x) = r” - n’(x)t”-’ + * * * + (- l)“Y(x) 

we next prove: 

PROPOSITION 7.3. Let R, = Z(x)/Z(x + 1) then R, is a free R-module on one generator 

p X9 where pX is the image of L(5, x) in R,. R, is a special y-ring (a special A-ring without 
identity) and for z E R 

(8) $“(z . A) = $k(z) - ti”b,) 

cg) Il/k(&> = ek(x)~x * 

Proof. L(5, x + 1) = (5 - l)L(& ) x an d so if pX is the image of L(t, x) in RX and q is 

the image of 5, we see that (q - l).~, = 0 i.e. r~ . px = pFL,. Any element in Z(x) is uniquely of 

the form f(t)L(& x) for f(T) E R[C] and the image of f(<)L(& x) in R, isf(q)pX =f(l)pL, 

since qpX = pX. So R, is an R-module on the generator pL,. If a E R and ap, = 0, then 

a - L(5, x) E Z(x + 1) and this implies a = 0, so RX is a free R-module. (8) follows from the 

multiplicative properties of $k and (9) is the image of (6) in R, . 

Proposition 7.3 may be used as the definition of 13~ and indeed this is the way it occurs 

in the topological context. It may be shown that (using K with ‘compact supports’) if 

R = K,(X) and x E R is the class of a G-vector bundle E over X, then R, = K,(E). The 

case X = point will be discussed in IV $1. 

A third description of ok will be of use later in this paper. Suppose x E P(R) and let [ 

be a primitive kth root of unity, then substituting - i’ for t in n,(x), we get an element in 

R 0 Z[T]. Consider the product n u n_,,(x) E R @ Z[[], where the product is taken over all 

roots of tk - 1 = 0 except 1. Identify R with its image in R 0 Z[c] under the canonical 

map rH r 0 1. We will demonstrate that n 2_.(x) E R and that n 2_,(x) = e,(x). If 

dim x = 1, this is clear because 

(10) nn-U(x)=n(l -xu)=l +x+.-e +2-l (dim x = 1). 

More generally, since 

(11) I-I A-.(x, + x2) = n Ux1) rr A-, (x2), 

if x is a sum of one dimensional elements, (10) is also true in this case. Finally by using the 

splitting principle and the naturality of fl A_,, , we see the result is true for arbitrary x E P(R). 
Thus we have proved: 

PROPOSITION 7.4. 0, = nL,, where the product is taken over all roots of tk - 1 = 0 

except 1. 

II. J-EQUIVALENCE OF REPRESENTATIONS 

In this part of the paper we define the notion of J-equivalence of representations of a 

finite group G. Let Tlv be the Galois group of Q(o) over Q where o is a primitive Nth root 

of unity and N = lG(. If CI E Flv and a(w) = gk, then for a (unitary) representation E of G, 

we show aE = Gk(E). For a certain class of groups which includes nilpotent groups, we may 

construct an explicit map of unit spheres S(E) -+ S(aE) which is of degree prime to the 

order of G. In the notation of the introduction, this will induce the epimorphism 

v : R(G),, +.7(G). 
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$1. MAPS OF SPHERES 

In this section we discuss the degree of a map of spheres and derive certain elementary 

results which are well known in algebraic topology. 

If S” is the n-sphere, then the nth homology group with integer coefficients H,,(S”) is a 

free abelian group on one generator y. If 4 : S,” + SZ”, then 4 induces & : H,(S,“) --, H&“) 

and the image of the generator yi is a unique integer multiple of the generator yz . The 

Brouwer degree of 4 is defined by 

(1) A&) = deg 4 . y2. 

It is trivial to see that the degree of the identity is 1 and that if 8: S,” + S3”, then 

deg 0# = deg @ deg 4. 

If we consider cohomology with integer coefficients and the induced map 

(p* : H”(S,“; Z) + H”(S,“; Z), 

it is easily seen that (6*(S,) = deg 4 . 6, where 6, is the canonical generator of R(S,“; Z) 

forr=l,2. 

We may embed S”-’ as the standard n - 1 sphere in real Euclidean space or S”‘-l in 

complex space C”. We describe the complex case as this is of interest to us. Let E be complex 

n-space and S(E) the unit sphere in E. If B(E) is the unit ball in E, B(E)/S(E) is a 2n-sphere 

with basepoint, which is S(E) collapsed to a point. B(E)/S(E) is the suspension of S(E). 

We have the canonical suspension isomorphism 

(4) Hz”-I(S(E); Z) E H’“(B(E)/S(E); Z) 

Suppose S(P) is the standard 2n - 1 sphere in the complex n-space F and 4 :S(E) -P S(F) 

a continuous map. If 5 E E, define @s(r) = 151~(151-‘~) for 5 # 0 and Q(O) = 0, then @ in- 

duces the suspension map &#J : B(E)/S(E) -+ B(F)/S(F) and using the commutative 

diagram : 

(3) 
Hz”-l(S(F); Z) 

IIt 
+ Hz”-‘($E); Z) 

H2”(B(F), S(F); Z) + H2”(B(E), S(E); Z) 

we see that deg sZ+ = deg 4. 

From [6], the Chern character ch : K*@(E), S(E)) + H*(B(E), S(E); Q) is a natural 

transformation of graded rings where we only consider the mod 2 grading K* = K” 0 K’, 

H* = He’ @ Hod. 

If q is the class of the standard line bundle over Sz = PI(C), then q - 1 is the canonical 

generator of I?(S’) and is mapped by the Chern character onto the canonical generator of 

H2(S2; Z). If x0 is the basepoint of S2, 

K*(S2, x,,) = K”(S2, x0) = R(S’) 

and H*(S2, x,; Q) = H*(S*, x0; Q) = fi*(S*; Q). 

By inspection, the Chern character is an isomorphism ch : R(S’) + R*(S*; Z). But the 

tensor product of n copies of the generator of I?(S’) is the generator of R(S2”) and similarly 
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for cohomology. Since the Chern character is natural and preserves products, it induces the 

natural isomorphism : 

(4) ch : i?(S*“) --f &*“(S*“; Z). 

The suspension map .Qr$ : B(E)/S(E) -+ B(F)/S(F) induces a commutative diagram: 

ch 

mwo, S(F)) - ~*“(wJ, f-w; Z) 

(5) ! 61 ! 4’ 

W(E), S(E)) ch - EP”(B(E), S(E); Z) 

If pE is the canonical generator of K(B(E), S(E)) (given by the tensor product of n 

copies of q - 1 Ed?) then (4) (5) show #(pF) = deg 4 . pE. 

E is locally compact, then using K-theory with compact supports as in [19], we may 

define K(E). If E+ is the one point compactification of E, 

K(E) = K(E+, +) = K@(E), S(E)) 

and we obtain: 

PROPOSITION 1.1. If+: S(E) + S(F) induces #: K(P) + K(E), then #(pF) = deg 4 . pE. 

Given &: S(E,) -+ S(F,) for r = 1, 2, we may form the topological join: 

61 0 42 : WA 0 W2) + WA 0 W2F,) 

where S(E,) 0 S(E,) may be identified with S(E, 0 E2). We describe the ‘curved topological 

join’ because this allows the identification to respect the usual metric in complex space. 

Denote by X = Xi 0 . * 1 0 X,, the curved topological join of spaces X1, . . . , A’,. This 

has as points formal sums C trx, where t, 2 0, c 1,’ = 1, x, E X, and we identify C t, x, 

and~t,x,‘ifeithert,=Oorx,=x,‘foreachr=l,...,n. 

This space is given the most coarse topology (i.e. smallest collection of open sets) such 

thatt,:X-r[O,l]andx”:t,-‘(O,l]~X,arecontinuousforr=l,...,n. 

The usual definition of join construction is homeomorphic to the above, it is exactly 

the same except that the condition 1 tr2 = 1 is replaced by c tr = 1. Using the curved join, 

if S(E,) is the unit sphere in E, for r = 1, 2, we may identify S(E,) 0 S(E,) and S(E, @ E2) 

since if t1 E S(E,), t2 E S(E,), then t,(, + t2 t2 E S(E, 0 E2) where t,* + t,* = 1. 

It is a simple exercise to show a map 4 : Y + A’, 0 . . . 0 X, is continuous if and only if t, c$, 

x,~arecontinuousr=l,...,n.Suppose Y= Y,o...o Y,, and 4, : Y, + A’, are continuous 

maps for r=l,..., n, then define 4 = 41 0 -** 0 4. : Y+ X by 4CC tr xr) = C f, 4&q. 
By our previous remark, 4 is continuous and so the join has the usual functorial properties. 

PROPOSITION 1.2. Given 4, : S(E,) + S(F,) r = 1,2, then 

deg & o 42 = deg & deg 4*. 

Proof. The natural pairing K(EJ $3 K(E,) -+ K(E, 0 E2) is an isomorphism and maps 

f&l 8 & Onto #% d Ezv 
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Using proposition 1.1, the result follows from the commutative diagram: 

K(F1) 0 K(F,) - K(F, 0 F,) 

I 
$1! 8 &2! 

I 
(,#V*42)! 

K(J%) 0 K(k) - K(& 0 E,) 

$2. J-EQUIVALENCE 

We will be concerned with continuous maps between the unit spheres of unitary repre- 
sentations of a finite group G. Most of the results of this section are true for any finite group 
and so we frame the description in this general context. By contrast the main result of $3 
will only be true for those finite groups whose irreducible representations are induced up 
from one dimensional representations of subgroups (these include nilpotent groups). The 
algebraic theorem of Part III will only be proved for p-groups. 

Let E be a unitary representation of G, then E is a complex vector space with a metric 
given by a hermitian inner product, together with a homomorphism p: G + Aut E (which 
preserves the metric). By the character of the representation we mean the complex class 
function given by the trace of p. Two representations have the same character if and only if 
they are isomorphic. Further facts about representations may be found in [13] or in [lo]. 

If E is a unitary representation of G, then the unit sphere S(E) of the representation 
space is preserved by the action of G. If I;is another unitary representation, a map : S(E) + 
S(F) is said to be a G-map if it commutes with the action of G. 

Given G-maps c$~: S(E,.) + S(F,) for r = 1, 2, then &, & induce 4: S(E, @ EJ + 
S(F, 0 FJ via the topological join. We may identify S(E, 0 E,) with S(E,) 0 S(E,) and 
define C#J = +i o &. Evidently C$ is a G-map and from proposition 1.2, we have: 

PROPOSITION 2.1. Suppose El, Ez ; Fl , F, are unitary representations of G and 4, : S(E,) + 

S(F,) is a G-map of degree k,, r = 1,2, then c&, & induce a G-map 6: S(E, @ E2) + S(F, @ F2) 

of degree k,k, . 

A very useful construction will be the process of inducing up a representation of a 
subgroup. 

PROPOSITION 2.2. Let E, F be unitary representations of thefinite group H and 4 : S(E) + 
S(F) an H-map of degree k. If H I G with canonical monomorphism i: H--f G, [G : H] = m, 
then 4 induces a G-map i, 4: S(i, E) --) S(i, F) of the spheres of the induced representations 
of G, which is of degree km. 

Proof. The induced representation space i, E may be considered to be the complex 
vector space generated by the symbols (g, u) g E G, u E E subject only to the relations: 

(i) (g, &vi + & Q) = &(g, 4 + &(g, 02) g E G, A, E C 0, E E, r=l,2 
(ii) (gh, u) = (g, hv) g E G, h E H, z, E E. 

The action of g’ E G on i* E is defined by g’(g, u) = (g’ g, a). 

Let Hl = H, Hz, . . . , H,,, be the left cosets of H in G, then as a vector space 
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i, E = El Q * - - @ E,,, where E, = {(g, v) I g E H,, v E E}. S(i, E) may be considered as 

S(E,) 0 -. . 0 S(E,,) and given 4: S(E) -+ S(F), define i, 4: S(i, E) + S(i, F) by 

A trivial calculation shows i* C$ commutes with G-action and using deg(4, o &) = 

deg c#+ deg &, we have deg(i, I$) = (deg 4)“. 

PROPOSITION 2.3. Let E, F be unitary representations of G and 4: S(E) + S(F) be a 
G-map of degree k. If u : G’ + G, then a induces a G’-map a* 4: S(a*E) + S(u*F) of degree 

k. 

Proof. Trivial. 

We now have the necessary information to deal with the notion of J-equivalence. We 

would like to say two unitary representations E, Fare J-equivalent if there exists a continuous 

G-map C$ : S(E) -+ S(F) of degree prime to the order of G. At the moment this is unsuitable 

because we have no reason to suppose that this relation will be symmetric. That it will be 

symmetric for p-groups of odd order will become apparent in Part IV; until then we give 

the following definition: 

Definition 2.4. Two unitary representations E, F of a finite group G are said to be 

J-equivalent if there are G-maps 4: S(E) -+ S(F), 8: S(F) + S(E) each of degree prime to 

the order of G. 

If E, Fare J-equivalent, write E N F. 

PROPOSITION 2.5. 

(1) J-equivalence is an equivalence relation. 
(2) isomorphic representations are J-equivalent. 
(3) J-equivalence is additive, i.e. El N F,, E, N F, * El @ E2 N Fl Q F, . 

(4) if i: H + G is a monomorphism, E and F are unitary representations of H 
and 4: S(E) -+ S(F), 8: S(F) + S(E) are H-maps of degree prime to the order of G, then 
i, E N i, F. In particular, if G is a p-group and H a subgroup of G (H # l), then 

E N F=> i,E N i, F. 

(5) if ~1: G’ -+ G, E and F are unitary representations of G and 4: S(E) + S(F), 
0: S(F) + S(E) are G-maps qf degree prime to the order of G’, then u*E N u*F. In par- 

ticular, if G, G’ are p-groups, E N F * u*E N u*F. 

Proof. (l), (2) are trivial. 

(3), (4), (5) are results of propositions 2.1, 2.2, 2.3 respectively. 

53.CONJUGACY 

Let G be a finite group of order N and let IN be the Galois group of Q(o) over Q 

where CO is a primitive Nth root of unity. The character of a complex representation of G is 

a function from G to the complex numbers (it is a class function), and it is well known 
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that the values of the character lie in Q(o), and so we may operate on a character by an 

element of r, . If E, Fare complex representations of G, define E, F to be conjugate if their 

characters are conjugate by an element of r, . 
A representation p: G --f Aut E may be realised over Q(w) (i.e. a basis may be chosen 

for E such that the matrix p(g) has scalar entries in Q(w) for each g E G). A proof may be 

found, for example, in [lo] theorems 41.1 and 70.3. If p is so realised, we may apply IX E TN 

to p and obtain another matrix representation ap. Since a complex representation is 

determined up to isomorphism by its character, it is easy to see that p’ = clp if and only if 

trace p’ = 01 (trace p). 

The notion of conjugacy of representations is evidently an equivalence relation. It is 

not additive since we may have E, = u, F, r = 1,2 where a1 # ~1~) so that E1 @ E2 need not 

be conjugate to FI 0 F, . 

We recall that the complex representation ring R(G) is the free abelian group generated 

by the isomorphism classes of irreducible complex (or unitary) representations of G. If 

c 1, ***, 5, are the classes of irreducible representations of G, every element of R(G) is 

uniquely of the form 1 n, t, where n, E Z. The representations of G are given by n, 2 0, 
r=l , **-, m. 

R(G) is isomorphic to the character ring of G. This is the subring of class functions from 

the set of conjugacy classes of G to the complex numbers generated by the complex characters. 

R(G) is a special A-ring (see 1.1.5) and in particular the Adams operators are defined on 

R(G). If t, is one dimensional $k(~,) = 5,k. W e may also operate on R(G) by elements of rN, 

since the elements of R(G) may be considered as difference characters. 

PROPOSITION 3.1. Zf x is a complex (d&%rence) character, then so is It/‘(x) and 
[$*(x)](g) = x(9’). Zf CI E Tlv and a(o) = uk (where k isprime to the order of the group) then 

@-X = tik(X). 

Proof. It is sufficient to consider x as the character of a matrix representation p. 

Restricting to the cyclic group C generated by g, p(g) is equivalent to a diagonal matrix 

diag(o,, . . . , co,) where wi is a qth root of unity and q is the order of g. Then x(g) = 1 oi 

and v(x)(g) = C O: = x(9’). Evidently if U(W) = gk, [ax](g) = X(gk) = [$“(x)](g). 

COROLLARY 3.2. The Adams operators are periodic of period dividing the order of the 
group i.e. I+!I Nfr =yV where N = ICI. In particular if&: R(G) + Z is the augmentation induced 
by the dimension of the representations, then $” = E. 

It is trivial Galois theory that the elements of R(G) invariant under r, consist precisely 

of those (virtual) representations with rational characters. (It is also well known [lo], that a 

complex representation E with rational character need not be a rational representation, but 

that m(E) . E is rational where the integer m(E) is the Schur index). This gives a complete 

description of the subring of invariants R(G)rN. 

This paper may be considered as an attempt to give a topological description of the 

quotient ring of coinvariants R(G),, = R(G)/W(G) where W(G) is the subgroup of R(G) 
generated by elements {x - ax}, x E R(G), a E rN. 
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Algebraically R(G)rN is easily described. If the representation E is irreducible, then 

trivially so is the conjugate representation ctE for o! E rN. Let us order the classes of irre- 

ducible representations tl, . . . , (,, . . . , I&,, such that no two of 11, . . . , 5, are conjugate and 

yet their conjugates exhaust rl, . . . , 5,. Then W(G) is generated by elements of the form 

{ti - ~15~) where 1 I i 2 s, a E rN and we have: 

PROPOSITION 3.3. R(G),, is the free abelian group on the generators 

{ti + W(G)), 1 lils. 

$4. J(G) AND THE EPIMORPHISM v : R(G),,+JCG) 

Let G be any finite group, let T(G) c R(G) be the additive subgroup generated by ele- 

ments [E] - [F] where E, Fare J-equivalent unitary representations and [E] denotes the 

isomorphism class of E. Define J(G) = R(G)/T(G). 

Remark. At this stage there is no reason to suppose that [E] - [F] E T(G) implies 

E and Fare J-equivalent, since [E] - [F] = [E 0 C] - [F 0 C]. There may exist suitable 

maps 4 : S(E @ C) + S(F @ C) and 8 : S(F 0 C) -+ S(E @ C) which are not of the form 

6=41O$z,O=&ofl,, since C$ and l3 are only asked to be continuous G-maps, they are 

not expected to be linear. It will be a result of the main theorem forp-groups (p # 2) proved 

in this paper that [E] - [F] E T(G) + E, F are J-equivalent. 

In order that an epimorphism v: R(G),, +J(G) be defined, it is sufficient to show 

that W(G) c T(G). (Recall that W(G) is the subgroup of R(G) generated by elements 

{x - crx}, x E R(G), CI E r,). 

Since J-equivalence is additive (2.5(3)), it is sufficient to show that E is J-equivalent to 

ctE where E is irreducible. 

LEMMA 4.1. If F is a one dimensional unitary representation of a finite-group G and 

UErN, then F is J-equivalent to uF. 

Proof. Suppose a(w) = CIJ~ (where k is prime to N = [Cl). Since F is one dimensional, we 

may choose a complex co-ordinate z for the representation space so that S(F) is given by the 

set of complex numbers of unit modulus. If x is the character of F, then the action of g E G 

on Fmay be written as z H x (g) . z = (z where 5 is an Nth root of unity. We may also consider 

aF to have the same underlying space with the action of g E G on aF given by ZH c(x(g) . z = 

ckz. Define 4: S(F) + S(crF) by 4(z) = zk; it is a G-map of degree k. A map 8: S(aF) + 

S(F) may be defined in a similar manner. 

In [lo] an M-group is defined to be a finite group G such that every irreducible repre- 

sentation of G is induced from a one dimensional representation of some subgroup. In 

particular, by [IO] theorem 52.1, a nilpotent group is an M-group. 

PROPOSITION 4.2. If E is an irreducible unitary representation of an M-group G and 

aErN, then E is J-equivalent to uE. 

Proof. There is a subgroup H < G and a one dimensional representation F of H such 

that i* F = E (where i : H + G is the canonical injection). The Galois group r, acts also on 
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R(H) and its action commutes with induction, i.e. i,(crF) = a(i*F) = aE. By lemma 4.1, F 
and aF are J-equivalent so we can choose maps 4: S(F) + S(aF), 8: S(aF) + S(F) of 
degree prime to the order of G. Then by proposition 2.5(4), i, F and i, aF are J-equivalent. 

Since J-equivalence is additive (2.5(3)), we may use proposition 4.2 to construct explicit 
J-equivalences between conjugate representations of M-groups. So we see that W(G) c T(G) 
and we may define v: R(G),, + J(G) by V(X + W(G)) = x + T(G) for x E R(G). v is ob- 
viously an epimorphism. 

Let E: R(G) -+ Z be the augmentation induced by the dimension of a representation 
and let Z(G) = ker E, then R(G) = Z @ I(G) as abelian groups. 

If E and F are J-equivalent, then there is a map S(E) + S(F) of degree prime to the 
order of the group, and for the degree to be defined, the dimensions of E and F must be 
equal. This shows T(G) c Z(G). 

Define j(G) = Z(G)/T(G) 

then J(G) = Z 0 j(G) as abelian groups. 

It is also easy to see that W(G) c Z(G) and that, in the usual notation, 

Z(G),, = Z(G)/ W(G) 

and R(G),, = Z 0 Z(G)r, 

This implies : 

PROPOSITION 4.3. Zf G is an M-group (in particular ifG is up-group), there is a canonical 
epimorphism v: R(G),, + J(G) and this induces an epimorphism v”: Z(G),, + j(G). 

III. THE ALGEBRAIC THEOREM 

The notion of a p-adic y-ring is defined here. It is made sufficiently general so that it 
includes Z, 0 Z(G) where Z(G) is the augmentation ideal for ap-group G and also Z, 8 g(X) 
for a finite, connected C W complex X. The algebraic theorem is given in terms of a p-adic 
y-ring and so includes both cases. 

$1 is devoted to properties of Z(G) for later use. In $2 a p-adic y-ring is defined. The 
Adams operations {1,9~}, when acting on a p-adic y-ring are shown to be continuous in the 
integer k (for the p-adic topology), and so induce operations (I,P> where a may be any 
p-adic integer. If r is the multiplicative group of units in thep-adic integers, a E I- acts via 
the operation $“. 

In 33 we introduce the operation pk for a p-adic y-ring A, as a homomorphism from the 
additive group of A to the multiplicative group 1 + A. If p # 2, l? has a dense cyclic sub- 
group generated by h, where (h, p) = 1, hpS1 f 1 modp’, and h modp is a generator of the 
multiplicative group of the field Z/pZ. In $4 we prove the main algebraic theorem of the 
paper, that p,, induces an isomorphism on invariants and coinvariants Ar g (1 + A)q 
A, r (1 + A), . The case p = 2 is discussed, and by introducing the notion of orientability 
for a p-adic y-ring, a corresponding theorem can be proved in this case. 
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Both theorems use an induction argument. The corresponding part of Adams work [2] 
utilises a filtration on K(X) given topologically by using the skeletons of X. Here the induc- 
tion uses a natural algebraic filtration, A = A( 1) 1 A(2) 3 * . - , given in terms of the y-opera- 
tions. 

Another point of note is that in [2], the result is found by using the properties of Ber- 
noulli numbers, here they are avoided. 

The algebraic theorem holds good for $$ = Z, 0 Z(G) where G is a p-group (p # 2). 

The group I- acts on &$ via the finite quotient group TX where N =pe = IGI and so the 

theorem implies ph : T&-, + (1 + Zz)rN is an isomorphism. 

In $5 we discuss the connection between the natural exponential map t$ of I.§7 and 

Pk. 

81. THE TOPOLOGY OF I(G) 

We recall that Z(G) is a free abelian group on the generators t2 - E(<~), . . . , 5, - E(&,,) 

where5,=1,t2 ,..., <, are the isomorphism classes of irreducible representations of G. 
Z(G) may be given a topology in three ways, with neighbourhoods of zero being given by: 

(1) Z(G) 3 PZ(G) = . . . 3 p”Z(G) I * * .p-adic topology 

(2) Z(G) 2 Z(G)’ 3 . . + 2 Z(G) =I * * * Z(G)-adic topology 
(3) Z(G) = Z(G), =I Z(G)z 3 . a. 3 Z(G), =I . . . y-topology (1.4(11)) 

PROPOSITION 1.1. For a p-group G, the topologies (I), (2), (3) are equivalent. 

Proof. It is shown in [3] corollary 12.3 that the topologies (2) and (3) coincide. (It is an 
easy exercise to show this result is true replacing Z(G) by any y-ring Z which has a finite 
number of generators, each of finite y-dimension). We now show (l),(2) determine the same 
topology. From [3] proposition 6.13, JGI . Z(G)” c Z(G)“+l for any finite group, and so if 
lG1 =p’,p=Z(G)” c Z(G),+! It remains to show a power of Z(G) lies inpZ(G). It is sufficient to 
show for a representation 5, that (5 - ~(0)“’ ~pl(G), for some m. Take m =p’ = ICI, then 

(5 - E(C))~~ 3 EjP” - E(~)P’ modpR(G). 

Since 5”’ = 9”“(r) mod pR(G) (1.5.2) 

and $“‘(4) = s(4) (11.3.2) 

We have (5 - ~(5))~’ = ~(0 - s(t)“” modpR(G) 

= 0 mod pR(G). 

Since (t - ~(5))~~ E Z(G), it lies in pZ(G) and this completes the proof. 

$2. p-ADIC y-RINGS 

We recall some facts about the completion of an abelian group. If HI HI I * * * 2 
Hn 2 * . . is a filtration of subgroups on an abelian group H, the filtration topology on H 
is given by fundamental neighbourhoods of zero {H,,}nz 1. It is Hausdorff if and only if 
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nH,, = 0. The completion of H in the filtration topology is fi = lim H/H,, . If the topology is 
Hausdorff, the canonical map H + I? is a monomorphism and we may identify H as a 
dense subset of A. In this case His complete if, and only if, H = I?, or alternatively if, and 
only if, every Cauchy sequence converges to a limit. 

The filtration {pnH},zo gives rise to the p-adic topology. Let Z, = b Z/p”Z (the 
p-adic integers) then the p-adic completion fi is a Z,-module. If B is a finitely generated 
abelian group, the completion of B is a finitely generated Z,-module, B = Z, @ B. The 
quotients {B/p”B} are finite and so compact in the discrete (p-adic!) topology. Thus for 
finitely generated abelian groups, p-adic completion is an exact functor, since inverse limit 
is exact for compact groups [l 11. Thep-adic completion of a finitely generated abelian group 
is compact in the p-adic topology. It is to be remembered that subgroups and quotient 
groups of finitely generated abelian groups are finitely generated. This implies that B/e = 

(B/C)^ 3 if C is a subgroup of B. 

We may give Z, a special &ring structure by A,(N) = (1 + t)“. Since the positive integers 
Z ’ are dense in Z,, if c( E Z,, there is a sequence {a,} in Z + which converges to ~1. It is 
easily seen that (F) + (F) and so nr(rz) = lim X(X,). If R is a special l-ring, then so is ZP @I R 
by 1.6.2. The I-structure on Z, @ R may be described in terms of that on R. Since 

Ak(@,x) =&(&x,), . . . , nk(a,); n’(x), . . . , n”(x)), where Pk iS a polynomial of weight k in 
the;l’(a,)=(rF),r=l,..., k, we see that lim IZk(cz, x) = Ik(lim c(, x) = nk(ax). Thus I,(crx) = 

lim &(fx!,x) = lim[&(xp] = J,(xY f or c( E Z, . Also lim yk(g x) = rk(ax) and y,(crx) = y,(x)“. 

Trivially $“(a~) = t~Il/~(x). 

If B is a special y-ring, then, by definition, there is a special augmented I-ring R such 
that B = ker E where E is the augmentation. Tensoring the exact sequence 0 + B + R -_, Z + 0 
with Z,, then O+Z,@B+Z,C3R+Z, + 0 is exact since Tor,(Z,, Z) = 0. Evidently 
Z, @ B is a A-ideal and is thus a special y-ring. 

DeJinition 2.1. If A is a y-ring, it is said to be a p-adic y-ring if it is the completion of 
some y-ring B, A = Z, @ B where 
(1) B is finitely generated as an abelian group. 
(2) the y-topology on B is finer than the p-adic topology. 

Examples. (1) i(G) for a p-group G (proposition 1.1) 

(2) z, @RX) f or a finite, connected, CW complex X. 
In this case, note that I?(X), = 0 for large IZ and so the y-topology is discrete. 

(3) pZ, where Il/k(~) = zi,‘zkk) = ’ 

This example is vital in the proof of the main algebraic theorem. We may calculate the 
{A”> using IS(l) which gives 

Mx) = -r $ Clog u41. 
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Hence 

d td = -tdtlog(l-t)+pdtlog(l-t~) X 1 
and so 

i.e. 

This gives 

Y,(P) =&,(1--f)(P) = C(1 - tY - (-t)“l-’ 
and so &(-p) = (1 - t)” - (- t)“. 

To seepZp is ap-adic y-ring with this structure, we observe that a I-ring with no torsion 
IS special if and only if the {$“} are ring homomorphisms such that +kr = $kt+Y. These 
conditions are obviously satisfied in this case. Alternatively, pZ, = Z, @pZ and it may be 
verified that the l-structure is special from the foilowing alternative description: 

Let C be the cyclic group of order p with generator g; let x be an irreducible character 
such that x(g) is a primitive pth root of unity. The invariant subgroup of Z(C) under the 
action of the Galois group rp is generated by p = 1 + x + * * * + xpel - p. The map 

8: Z(C)Tp -+pz 

defined by evaluation on the generator g is an isomorphism which gives the required y-ring 
structure on pZ. 

Since yr( -p) = (1 - t)” - (-t)“, either yr( -p) = 0 or p 1 y’( -p), but yp-‘( -p) = 

(- l)P-‘p and so the lowest power ofp attainable in B. is in [r”-‘( -p)]” where 

(m - l)(p - 1) < n I m(P - 1). 

i.e. B~m-l~~p--l~+l = B~m-lj(p--1j+2 = -. * = B,,,(p-lj =p”Z. The y-topology and p-adic 
topology coincide and B,, = B,,,, unless n 3 0 mod(p - l), in which case BJB,,, is the 
cyclic group of order p. 

(4) Z, Q, F where Fis finitely generated abelian group written additively, the product of 
two elements is defined to be zero and n”(x) = (- l)k-‘k”-‘x for some fixed integer n. It is an 
interesting calculation to show y*(x) = 1 + xfn(t) where f.(t) satisfies the recurrence rela- 

tions fi(t) = t,f.+I(t) = t(1 - t)f,‘(t> an d so y”(x) = 0, m > n and the y-topology is dis- 
crete. Since the operations {A”}, {yk} are given by multiplication by constants, this is called a 
scalar y-ring. A topological instance is given by F = i?(S’“). 

We have already remarked that the Adams operations are p-adically continuous on A. 

If we temporarily write I+~~(u) = Il/(k, a) for k E Z +, a E A, then II/ : Z ’ x B --, B is p-adically 
continuous (1.5.6). But Z ’ is dense in Z,, B is dense in A and A is complete, so by con- 
tinuity, $ extends to a continuous map $: Z, x A + A. Thus we have: 

LEMMA 2.2. The domain of the Adams operations {$“} in the variable k extends by 
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continuity, to give continuous operations II/“: A + A (CI E Zr) on a p-adic y-ring A. Zf /I E Z, , 
pip = lp. 

Let r be the group of units ofZ, , then if LY E r, c1 acts on A via the operation I/P. By lemma 
2.2, this defines a (p-adically) continuous r-action on A and makes A into a compact topo- 
logical r-module. 

Of course it may happen that the Adams operators are actually periodic on B, i.e. 

Ic/ pe+k = ijk for some integer e, as is the case on Z(G) where G is a p-group of order pe. In 
this case r acts on both B and Z, 0 B through the finite quotient r,,. (It is easily seen that 
r = lim Fp” where r,,, is the Galois group of Q(o) over Q and o is a primitive mth root of 

unity): Since B is finitely generated, tensoring with Z, is exact, and so commutes with the 
formation of invariants and coinvariants. So we have: 

PROPOSITION 2.3. Zf B is as in definition 2.1 and the Adams operators {@“} are periodic 

in k of period p’, then r acts on B and B = Z, 0 B via the quotient group I?,,. Furthermore 

(@r = (Br)*, (B), = (Br)^. 
If B satisfies the requirements of proposition 2.3, we may simplify the notation for invar- 

iants by writing fir, and for coinvariants by writing & . In the case of B = Z(G) for a p-group 

G, we have: 

COROLLARY 2.4. For a p-group G of order N =p’, 

Z(G)r = Z(G),, > g$, =2&. 

Suppose A is a p-adic y-ring and A = B = Z, @ B as usual. Define A(n) h = (B,,) * = 
Z, @ B,, , the closure of the nth ideal in the y-filtration on B. Since lim yk(~, X) = yk(~x) where 
{cI,} is a sequence of integers with limit u E Z,, we see A, c A(n). Evidently (A,)” = A(n), 
but since A, need not be closed in the p-adic topology, we do not necessarily have A, = A(n). 
From the definition of a p-adic y-ring, the filtration topology {A(n)},,I is finer than the 
p-adic topology on A. Since A is complete in the p-adic topology, a fortiori it is complete 
(Hausdorff) in the {A(n)} topology and so A = &J A/A(n). In this discussion, we have 

proved : 

PROPOSITION 2.5. ZfA is up-adic y ring andA = (A,)“, thefiltration topology {A(n)},,t 
isfiner than the p-adic topology on A. Also A = &I A/A(n). 

Note. With two possible topologies available, if we refer to a topology without quali- 
fication, we mean the p-adic topology. Likewise, a continuous map will mean p-adically 
continuous. 

Next we observe that 

A(n)lA(n + 1) = (B,)^/(B.+&^ = (K/&+l)” = Z, 0 (B,I&+J 

Thus A(n)/A(n + 1) is a p-adic y-ring with the structure of Example (4) above (this 
follows from 1.5.5). The I-operations acting on BJB,,,, are given by n”(x) = (- l)k-‘k”-‘x. 
Since Ak(ax) = lim I“(a, x) where {a,} is a sequence of integers with limit c1 E Z,, 2’ acts by 
the same formula on A(n)/A(n + 1). Thus we have: 
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PROPOSITION 2.6. A(n)/& + 1) is a scalar p-adic y-ring. 
(i) I”(u) = (- l)k-lk”-ia for a E A(n)/A(n + 1) 

(ii) ~“(a) = c(k, ) n a w h ere c(k, n) E Z depends only on k, n. 
(iii) tik(u) = k”a. 
(iv) the r-action is defined by $“(a) = u”a for u E JF. 

53. THE OPERATION ok 

If A is a p-adic y-ring, a series xr> I a,. , with a, E A(r), converges in the p-adic topology 
since it converges in the filtration topology {A(n)},, 1 which is finer. This shows that the set 
1 + A is a multiplicative group. It is a compact, topological group, with fundamental 
neighbourhoods of 1 given by { 1 + P”A},,~ 0, or equivalently { 1 + p”A + A(n)},, 1, since the 
filtration {A(n)) is finer than {p”A}. 

Let a E A, a E Z,, then define y,(u) = 1 + c a’yr(a) E 1 + A. For fixed tl, yar is a homo- 
morphism from the additive group of A to the multiplicative group 1 + A. It is evident that 
‘y01 is p-adically continuous using the alternative system of neighbourhoods on 1 + A (given 
any N, choose n such that yk(p”A) c pNA for k = 1, . . . , N - 1, then y,(p”A) c 1 + pNA + 

A(N)). 

More generally, if CI E S where S is any finitely generated &-algebra, then y,(a) E 1 + 
S @ z, A. In particular, let (k, p) = 1 and let S = Z,[t]/C#$(t) where @k is the kth cyclotomic 
polynomial, then S = Z&l, where [ is (in the algebraic closure of Q,) a primitive root of 
t k - 1 = 0. Note that @k is irreducible over Qp, since (k, p) = 1: this follows by showing G& 
is irreducible over Z/pZ and a fortiori, irreducible over Qp. If we consider the product 
n(l - U) over all roots (u} of t ’ - 1 = 0 except 1, we find fl( 1 - U) = k. This shows 

3 E Z,CCl and so x,~(~- 1) (4 E 1 + &CIl 0 z, A. 

Define p,(u) = n yU,(“_ l,(a) where the product is taken over all roots of t k - 1 = 0 

except 1. 

Since Z,[[] is a free &-module containing 2, as a direct summand, we may consider 
A = Z, @ z, A as a direct summand of Z,,[Q @ z, A. We demonstrate that p,(a) E 1 + A. 

If J+(U) = 1 + at, then 

If V is the free y-ring on the generator crl (Iv), then, using a limiting argument, 
~~(a,) E 1 + V, hence by the universal property of V(I.4.4) for arbitrary a E A, p,(a) E 1 + A. 

PROPOSITION 3.1. If A is a p-udic y-ring, it is an additive compact topoIogica1 r-module, 
1 + A is a multiplicative compact topological r-module, and 

pk: A + 1 + A is a (p-adically) continuous r-module homomorphism. 

Proof. In $2 we have already seen that A is a compact topological F-module. For the 
same reasons, so is 1 + A. Since p,(p”u) = [~~(a)]““, pk isp-adically continuous. Since $” 
commutes with the y-operations, it follows that pk is a I-module homomorphism. 
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$4. THE MAIN ALGEBRAIC THEOREM 

For most of this section we insist p # 2. If p is odd, the group of units of Z, is mono- 
genie (contains a dense cyclic subgroup), whereas the group of units of Z2 is not. Specifically 
for p # 2, I- is topologically generated by the integer h where (h, p) = 1, hpml f 1 mod p2 
and h mod p is a generator of the multiplicative group of the field Z/pZ; for p = 2, I is the 
direct product of the monogenic group with generator 3 and the group { + 1). In the proof of 
theorem 4.1, we will use the fact that I is monogenic and so we must omit p = 2. A refine- 
ment which includes p = 2 will be considered in theorem 4.5. 

Until then we assumep # 2, so I is monogenic, with generator q, and q acts on ap-adic 
y-ring via the Adams operation Ii/h, where h is the integer defined above. The action of I? on 
any topological r-module M is uniquely defined by the action of q, since the powers of q are 
dense in I. The map (1 - 9) defined by (1 - a)x = x - yx is a continuous homomorphism. 
If M is Hausdorff, ker(1 - q) is closed and ker(1 - ye) = Mr, the invariant submodule. 
Moreover if A4 is compact, the image of (1 - q) is compact and hence closed. But im(1 - q) 
contains all elements of the form (1 - r]‘)x and so contains the closure of such elements. 
Since the powers of 7 are dense in I, we see im(1 - q) = (1 - T)M and so coker(1 - ‘I) = 
Mr , the coinvariant quotient module. We note that if A is a p-adic y-ring, in particular it is 
compact and so the above remarks apply. 

Any continuous homomorphism f: M, + M, of topological r-modules induces homo- 
morphism f r and fr on invariants and coinvariants. 

THEOREM 4.1. For any p-adic y-ring A where p # 2, p h : A + 1 + A induces isomorphisms 
(p,Jr and (P~)~ where h is a generator of I?. 

This is the main algebraic theorem and the proof will proceed using induction on the 

filtration (A(n)juzl. 

LEMMA 4.2. Zf 0 + X + Z + Y + 0 is an exact sequence of p-adic y-rings and theorem 
4.1 is true for X, Y, then it is true for Z. 

Proof. If M is a compact topological I module, then M r and Mr are the homology 
groups of the complex 0 -+ M’_? M --f 0. In particular this is true if M is a p-adic y-ring. 
The short exact sequence 0 + X + Z + Y --, 0 gives rise to the exact homology sequence 
0 + Xr -+ Zr -P Y r + Xr + Zr + Yr -+ 0. (ker-coker sequence). pk induces a homomor- 

phism of such sequences: 

-x,------r zr- Yr-+o o_jr_‘T_r , , , 

O-+(1 +X)r-+(l +Z)=+(l+ Y)r - (1 + X), --* (1 + Z), -+ (1 + Y)r + 0 

Two applications of the Five Lemma give the required result. 

Proof of Theorem 4.1. For each n 2 1, we have an exact sequence: 

0 --) A(n)/A(n + 1) + A/A(n + 1) -+ A/A(n) + 0. 



GROUP REPRESENTATIONS, A-RINGS AND ~EJ-HOMOMORPHISM 283 

Since A = l&r A/A(n) (proposition 2.5), by induction on n we need only prove two facts: 
(i) the theorem holds for A(n)/A(n + l), n 2 1 (recall A = A(I)) 

(ii) lim commutes with r and r on {A/A(n)) and on ((1 + A)/(1 + A(n))} 
Now (ii) is certainly true because l& is an exact functor for compact groups ([ll] chapter 
VIII 5.6), and the groups concerned are compact by propositions 2.6 and 3.1. 

It remains to prove (i). We recall the structure of A(n)/A(n + 1) given in proposition 
2.6. Since +“(a) = h”a for a E A(n)/A(n -I- l), then (1 - ~)a = (1 - @‘)a. If It $0 mod(p - l), 
then p ,f 1 - h”, implying 1 - h” has an inverse in Z,. So 1 - q is an isomorphism and the 
invariants and coinvariants are zero. In this case the theorem is trivially true. 

We need therefore only consider n z 0 mod(p - 1). We will in fact show pn is itself an 
isomorphism in this case (and so induces isomorphisms on invariants and coinvariants.) 
Since yk(x) = c(k, n)x where c(k, n) E Z, p,,(x) = 1 + d(h, n)x where d(h, n) E ZP and depends 
only on h, n. Now multiplication by d(h, n) on A(n)/A(n + 1) is an isomorphism if, and only 
if, p X d(h, n). We need not compute d(h, n) directly, we need only demonstrate the existence 
of ap-adic y-ring, such that A(n)/A(n + 1) # 0 for n = 0 mod@ - l), and such that ph is an 
isomorphism on A(n)/A(n + l), n z 0 mod(p - 1). The most economical example of such a 
ring is given in example 3 of $2. 

A =pZ, where yr(-p) = (1 - t)” _ (_t)P, +k = (idengtityb:;p) = 1 

In this case A(@ - 1)) =p’Z,, A(r(p - 1) + 1) =p*+‘Z, and so A(n)/A(n + 1) = 0 if 
n f 0 mod@ - 1) and A(n)/& + 1) is the cyclic group of order p if n E 0 mod(p - 1). 
If n = r(p - l), a generator for A(n)/A(n + 1) is the image of pr. 

where the product is taken over all roots of 

th - 1 = 0 except 1, and so 

rI<l - u)” 
P,(P) = ncl _ up) = hP-’ = 1 + 

p-1-1 
_. p. p 

If m = 
hP-1 _ 1 

P ’ 
then m is an integer prime to p since hp-l $ 1 modp’. For p # 2, by 

induction on r, we have (1 + mp)” -’ = 1 + mprmodpri’, thus p@) = ph(p)pr-’ = 
1 + mp’ modp’+’ and so in the y-ring A(n)/A(n + 1) where 12 = 0 mod(p - l), we have 
p,(a) = 1 + ma. Since (m,p) = 1 and A(n)/A(n + 1) is the cyclic group of order p, ph is an 

isomorphism. 

Thus A is the required example to complete the theorem. 

COROLLARY 4.3. (Ph)r : 6$- + (1 -t &j)r ’ 1s an isomorphism .for a p-group G of odd 
order. 

Further insight into the structure of p-adic y-rings and into the proof of Theorem 4.1 is 
obtained by recalling that the group I of p-adic units decomposes naturally as a direct pro- 
duct 

I- g u x (z/pz)*. 
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Here Uis the subgroup of I consisting of elements congruent to 1 mod p, and (Z/pZ)* is the 
multiplicative group of the finite field Z/pZ. To get this decomposition we have to split the 
exact sequence 

1-+u-+r+(z/pz)*-*1, 

that is we have to lift from Z/pZ to Z, the roots of the equation 

x p-1 -l=O 

This lifting is possible by Hensel’s Lemma. 

Let I0 be the subgroup of I obtained in this way: it is isomorphic to (Z/pZ)* and hence 
cyclic of order p - 1. Now if C is cyclic of order p - 1 generated by T, the group algebra 
Z,[C] has the elements 

pi = n T - 01’ 
jzi ai i=O,i,...,p-2 

where a generates I,,, as a maximal set of orthogonal idempotents. Hence any Z,[C]- 
module M has a canonical decomposition 

M=@Mi Mi =piM 

so that, on Mi , T acts as multiplication by ai. Applying this with A4 = A (p-adic y-ring) and 
C = To we see that we have a direct sum decomposition 

A=~Ai 

where Ai is the sub Z,-module of A on which @ acts as multiplication by a’: in particular 
A, is acted on trivially by IO. Since I,, acts on A by ring automorphisms it follows that 
Ai AjcAi+j. Since Ucommutes with I0 each A, is stable under U. Thus A has the structure 
of a graded U-ring (graded by Z/(p - 1)Z). This grading of A is related in quite a simple 
way to its y-filtration {A(n)}. If we put A,(n) = Ai n A(n) for the induced filtration on Ai then 
(2.6) (iii) shows that 

Ai = Ai(n + 1) if n f i mod (p - 1). 

Thus the filtration of A, goes in jumps of (p - 1). 

When we come to consider the invariants and coinvariants of I the above decomposi- 
tion of A clearly implies 

Ar g A,U Ar E (A,)” 

Thus Theorem (4.1) is true for A if and only if it is true for A, . On the other hand our proof 
of (4.1) in fact gives the stronger result: 

PROPOSITION 4.4. For the p-adic y-ring A,, (p # 2) the homomorphism ph : A, + 1 + A,, 
is an isomorphism. 

The casep = 2. If the action of I is such that the elements 1, - 1 E r have the same ac- 
tion, then I acts via the quotient group I’ = I/{ + l}. Since I’ is monogenic forp = 2, (with 
generator the image of 3) it might be hoped that in this case the proof would go through for a 
2-adic y-ring. These hopes are shown to be ill-founded by considering the example at the end 
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of the proof of theorem 4.1 for p = 2. In this case, $ -I = identity and so I? acts via the 
quotient group F’. We see that p,(2) = k, so we must choose k s 3 mod 4 to ensure pn is an 
isomorphism on A(l)/A(2). But in this case p,(4) = k2 E 1 mod 8 and pk is not an isomor- 
phism on A(2)/A(3). 

More subtle refinements will be needed for the prime 2, which correspond to consider- 
ing real K-theory instead of complex K-theory. We give a brief outline of this situation. If A 
is any Y-ring, A is said to be oriented if Yt(u) = Y1 -Ja) for all u E A. (Suppose, when we 
adjoin a unit to A in the standard way to give a special augmented I-ring R, that R is finite 
dimensional. Then, in this case, A is oriented if, and only if, every finite-dimensional element 
x E R satisfies n’(x) = A”-‘(X) where dim x = n.) Equating coefficients in c f(u)t’ = 

c Y’(u)(l - t )‘, we find 

(1) 1 = 1 +r;lY’ i.e. Y1 = - C Yr and A(1) = A(2) 
rt2 

(2) Y1 = -rglv' 

and in general, 

(3) yk=(-l)kYk+(-l)‘+l(k+ l)Yk+’ + higher terms in the y-filtration. 

From (3), we find A(2n - 1) = A(2n) for II 2 1. 
[Notice the significant difference between this and the filtration of the real case in [2]. There 
the filtration FI I F, 2 - * * I F,, I> * * * satisfies F, = F,,,, for n zz 3, 5, 6, 7 mod 8.1 

We shall now require the ‘completion’ of the verification principle for those y-rings 
which are complete in the y-topology. In this case, a natural operation is a power series in 
the {yr}, and an identity holds if, and only if, it holds operating on a sum of elements of 
Y-dimension one. (c.f. 1.4.5). If u = x1 + * * - + x, is a sum of elements of Y-dimension one, 

_ ,~lrYr@)f-L 

1 + c y+>tr = - ; log r,(a) = -Sir i-& - 
s 

rz1 

Put t = 1, then - c rr%) 

1 + c YW 
= c ((1 + x,)-i- l} = @-‘(c xJ = $-‘(a). [I/-’ is defined 

because - 1 E Z,]. 

From the identities (1) (2) Ic/-’ = identity, when acting on an orientable p-adic y-ring. 
Thus the F-action on an orientable p-adic y-ring factors through the quotient F’ = I/{ & 11, 
which is monogenic for all primes, including 2. 

For p # 2, define ok(a) = p&z) = (p&))“2 (2 has an inverse in Z,), 

For p = 2, define rr3(u) = ys,ts_i,(u) where l2 + 4 + 1 = 0. 

If A is an orientable 2-adic y-ring, we have 

03(a) = Yr/(s- 1,(a) = Y(l-tr<-l,-‘,(a) = Yl,(l-da) = YI/(p-1)(4 

where [ = l/c = - 1 - 5 is the conjugate of c under the Galois group of Q2([) over Q, . 

From this it follows that ~~(a) E 1 + A: in fact if 
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a&) = 1 + a + /.I< a, /I E A, 

then l+a+j?T=l+a+fi(-1-C) 

and so /I + 28[ = 0 

which implies /I = 0 and hence g3(u) E 1 + A. 

We can now prove: 

THEOREM 4.5. IfA is CNZ orientable p-adic y-ring, cr ,, : A -+ 1 + A induces isomorphisms 
(a,Jr’ and (a&, on invariants and coinvariants where p is any prime and h is a generator of 
r’= r/{ * l}. 

The proof is by the same technique as in theorem 4.1. The only significant difference is 
the calculation at the end. The example of a p-adic y-ring is 2~2,) where 

Y,(-2p) = [(l - t)P - (-tyy 

Evidently this y-ring is orientable. 

For p 22, a,(2p) = hP-‘. Multiplication by 2 is an isomorphism; since p,, is an iso- 
morphism, so is a,, . 

We need only show a3 is an isomorphism, on A(2n + l)/A(2n) since A(2n - 1) = A(2n) for 
any orientable y-ring. But if A = 4Z2, A(2n - 1) = A(2n) = 4”&. By induction on r, 

(1 -4)4’-‘~ 1 +4’mod4’+‘,r>2, 

giving a,(4) = 1 - 4, 

a,(4’) E 1 + 4’ mod 4’+i, Y 2 2, 

and so a3 is an isomorphism on A(2n + l)/A(2n). 

§S. THE CONNECTION BETWEEN 8, AND pr 

Recall that 13~ and pk are defined by: 
(1) t?,(x) = nn_.,(x) for finite dimensional x in a special A-ring R. 

(2) p,(u) = nyu,Cu-lj(a) for a 6 A (p-adic y-ring) 
where in both cases the product is taken over all roots of tk - 1 = 0 except 1. 

Since 1, = yslcl +sj (1.4.(2)), in some suitable formal Setting ok and pk will agree. In this 
section, we describe the required situation. 

Let R be an augmented special I-ring augmented by E: R + Z, where B = ker E. We 
assume that R satisfies the following: 
(3) R is finitely generated as an abelian group by x1 = 1, x2, . . . , x,,, which are finite- 

dimensional. 
(4) s(xr)=dimx,forr=l,...,m. 
(5) The y-topology on B is finer than the p-adic topology. 
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Note that (4) implies s(x) = dim x when x is finite dimensional. In this case 

y,(x - E(X)) = &,(I _ Jx) (1 + +-)-e(x) = R,,(r _ t,(x>( 1 - t)E(*). 

This shows y,(x - E(X)) is a polynomial in t of degree I dim x, and so the y-dimension of 

x - E(X) is not greater than the dimension of x. Since B is generated as an abelian group by 

x2 - 4X2), . *. > x,,, - E(x,,,), it is straightforward to see that the B-adic topology coincides 

with the y-topology on B. Of greater importance is the fact that A = 2, 0 B is a p-adic 

y-ring (by (5) above). 

PROPOSITION 5.1. Let i : R + Z, 0 R be the canonical map and (k, p) = 1, then .for 
jinite dimensional x E R, i(O,(x)) has a multiplicative inverse in Z, 0 R. 

Proof. If dim x = n, since t$ is of degree k, &(8,(x)) = k” (1.7.2). Since k is prime to p, 
we need only show that E(Z) = r, (r, p) = 1 implies i(z) has a multiplicative inverse in Z, @ R. 
Certainly r - ’ EZ~@R and r-l i(z) = 1 + a where a E A = Z, 0 B. Since 1 + A c Z,, 0 R 
is a multiplicative subgroup, 1 + a has a multiplicative inverse 1 + a’ E 1 + A and i(z) has 

inverse r-‘(1 + a’) E Z, 0 R. 

We may now extend the domain of 6, to give a map 9, : R + Z, 0 R homomorphic 

from addition to multiplication by 

(6) t&.(x - u) = i O,(x)[i O,(y)]-’ for x, y finite dimensional. 

If E’ : Z, @I R + Z, is induced by the augmentation E : R -+ Z, we see 

E’(&(x - J,)) = ke(x)-e(y) 

So if E(X) = E(Y), then 0,(x - y) E 1 + Z, 0 B = 1 + A. This implies: 

PROPOSITION 5.2. ok induces a homomorphism Ok : B -+ 1 + A where A = Z, @ B. 

PROPOSITION 5.3. The following diagram commutes: 

B 

I 
\ i\ Ok 

\ 
Pk L 

A----+l+A 

Proof. It is sufficient to show t&(x - n) = pki(x - n) where dim x = n, i.e. 

t&(x) = Pk i(x - n)&(n) in Z, @ R. 

From (I), (2) we need only show 

L(x) = ~~~r-,,)(x - n)(l - V in Z,Kl 0 zp<Zp 8 RI 
where 5 is a primitive kth root of unity. But y,(x - n) is a polynomial in t of degree I n, 

and 4 = Y~~(I ++ The result follows. 

Since Pk, ek commute with the Adams operations, if I acts through a finite quotient as 

in proposition 2.3 then Pk, ok induce a COrrUnUtatiVe diagram of coinvariants: 
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COROLLARY 5.4. If the Adams operations are periodic on B, i.e. $N+r = I+V for some 
N = p”, then the following diagram commutes: 

l-4. 

COROLLARY 5.5. If G is a p-group and (k, p) = 1 

I(G), 

commutes. 

IV. THE MAIN THEOREM 

The theorem is a direct consequence of the following 

p-group (p # 2): 
0 

commutative diagram for a 

I 
I(G), -J(G)- 0 

Ai’ (Phh- ,(I j(G)) 68 
A 

0 - I(G)I- r-0 
The crucial factor is the definition of 0,,. In the light of the commutative diagram of 

111.5.5 

I(G), 

it is sufficient to show (~9,)~ factors through J(G) i.e. that there is a commutative diagram: 
s 

I(G),------+ j(G) 
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This needs some topological facts from equivariant K-theory which are recalled in $1. 
The main commutative diagram is set up in $2 and the required conclusions are drawn. 

$1. EQUIVARIANT K-THEORY 

In this section we recall some basic facts of equivariant K-theory from [5], [19] which 
will be instrumental in showing (0,. factors through J”(G) for (k,p) = 1 where G is any 
p-group. The main result of this section is that if #: S(E) -+ S(F) is a G-map of degree r, 

then there is an element z E R(G) of augmentation r such that 8,(F) . z = 8,(E) . G”(z). 

Note that the results of this section are true for any finite group. Throughout $1, the 
symbol G will refer to an arbitrary finite group. 

Let E be a unitary representation space of G, Ef its one-point compactification. Then 
using Kc-theory with compact supports we can introduce K,(E) = &(E+, +). It is a 
module over K&point) = R(G). The main theorem of the subject, as proved in [5; (4.3)] 
asserts that K,(E) in a free module over R(G) with a canonical generator+ ,u~. Moreover 
the method of proof in [5] shows also that the map 

j* = K,(E) --) WYE 0 1)) 

is injective, where P(E @ 1) is the projective space associated to E @ 1 (1 denoting the trivial 
representation C) and j* is induced by the open inclusion j : E+ P(E6 1) given by 
j(u) = (u, 1). If h is the class of the standard line bundle H over P(E@ I), the image of ps 

is [5; (4. l)] 

j*(& = c(- l)‘KX(E). 

If i: P(E) +P(E@ 1) is the natural inclusion then i*j* = 0 and so 

c( - l)‘(i*(/z))‘A’(E) = 0 in K&‘(E)). 

Replacing E by E Q 1 we deduce the equation 

c( - l)‘/z’A’(E @ 1) = 0 

or equivalently 

(1) (1 - h) c (- l)‘h”,Y(E) = 0. 

From these facts it follows that we can identify K,(E) (as I-ring) with the R(G)-module 
denoted in 1.7.3 by R(G), . To see this we map an indeterminate 5 to h-l E K&E Q 1)). 
This induces a homomorphism 

u: R(G), *j*&(E) 

in which 

a(c( - I)‘$-‘X(E)) = h-“(x(- l)W(E)) 

= c( - l)‘h’A’(E) by (1) 

= j*(k). 

t In [5] this is denoted by hs 
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Here (as in 1.7.3) rl is the image of 5 in R(G),. Now in 1.7.3 we saw that R(G), was a free 
R(G)-module generated by the element c( - 1)‘~“~‘2(E). S ince j*&(E) is freely generated 
byj*(& it follows that LX, and hence also (j*)-ia, is an isomorphism. We shall therefore 
identify K,(E) with R(G), by this isomorphism which takes the generator nLE into the 
element C( - 1)‘~“~‘X(E), already denoted by nE in 1.7.3. 

From (1.7.3) we can now read off the action of I/J? on K,(E). Namely we have 

(2) V(ZPE) = $“(z) - $k(PEl 

c3) IC/kbE> = hc(‘? * PE 

Remark. The structure of K,(P(E)) is also known-it can be easily deduced from the 
main theorem of [5] by various methods-and one has 

K,(R) z R(G)CSIIW) 
where Z(E) is the ideal introduced in 1.7.3. For our purpose however this is not really needed. 

Suppose now that E, F are two unitary representations of G, and suppose we have a 
G-map C#J: S(E) + S(F). Extending radially to the balls C$ induces the suspension C&#J : 

B(E)/&‘(E) + B(F)/S(F). Since we have the obvious identification of B(E)/S(E) with E+ 

we obtain an R(G)-homomorphism of A-rings 

C/J! : K,(F) + K,(E). 

Since these are free modules there is a unique z E R(G) such that 

@(nE) = zpE 

Applying Ii/k to this and using the formula (I) for E and also for F we obtain 

&(F)zP, = &(R)$“(z)PE . 
Since pE is a free generator we deduce 

&(F)a = &(R)tik(a) 

It remains to show that E(Z) = deg 4. This is straightforward. 

The inclusion of the trivial group I in G induces the maps 

fs: K,(E) + K(E), E: R(G) + R(1) = Z 

which forget the G-structure. Since K,(E) is an R(G)-moduIe in a natural way, fE is equi- 
variant, that is to say 

(4) fE(%) = &(Z)PE z E R(G). 

(6: S(E) + S(F) induces #‘: K(F) + K(E) where by II.l.l., 

(5) ‘$‘(Z+) = deg 6 . FE* 

By naturality, the diagram 

R,(R) 4’ ‘R,(R) 

commutes. 
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From (4), (5), deg 4 = E(Z). 

We summarize the results above in: 

PROPOSITION 1.1. Let E, F be unitary representations of a finite group G. If 4: S(E) --, 
S(F) is a G-map of degree r, there is an element z E R(G) of augmentation r such that 

UF)z = I%(E)&). 

$2. THE COMMUTATIVE DIAGRAM 

From proposition 1.1, given a G-map 4: S(E) + S(F) of degree r, there is an element 

z E R(G) such that E(Z) = r and q,(F)z = O,(E)$k(z). Suppose G is a p-group. If r is prime 
I\ 

to p, since E($~(z)) = r, r -lz and IC/“(r-‘z) E 1 + Z(G) c Z,,6 R(G). For (k,p) = 1, we then 

have, in 1 + z, the equation: 

(1) O,([E] - [a) = r-lz. [ll/“(r-‘z)]-‘. 
n n 

If c: 1 + Z(G) + (1 + Z(G)), is the canonical map, we therefore have: 

LEMMA 2.1. Let G be ap-group and k be prime top. If there is a G-map 4 : S(E) + S(F) 

of degree prime to p, then [E] - [F] is in the kernel of the map co,: Z(G) --t (1 + 2) ,- . 

COROLLARY 2.2. ZfE and F are J-equivalent, then [E] - [F] is in the kernel of CO,. 

Recalling that T(G) is the subgroup of Z(G) consisting of elements [E] - [F] where 

E, F are J-equivalent, we have: 

COROLLARY 2.3. T(G) c ker c& s 

But the following diagram commutes: 

Z(G) 81. 1+ Z(G) 

I 

1 d I c 

Z(G), mu- + (1 + I&)), 

where d is the canonical map. So T(G) c ker (q&d. Immediately we see that (&)r factors 

through the group J(G) = Z(G)/T(G). Define ok: j(G) -+ (1 +z))r by &(x + T(G)) = e,(x) 
for x E Z(G) then: 

PROPOSITION 2.4. The following diagram commutes for a p-group G, where v” is the 
canonical epimorphism of 11.4.3. 

Z(G), A j(G) 
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From III.55 we have the commuting diagram: 

Z(G), 

Fitting together diagrams (3), (4) with k = h (the generator of I), we find the required 
diagram for a p-group of odd-order: 

0 

I 
Z(G), ’ ) j(G)-- 0 

r-0 
We remember (& is an isomorphism by 111.4.3, it is an epimorphism by 11.4.3, and i is the 
canonical map from a finitely generated free abelian group (by 11.3.3) to its p-adic com- 
pletion and is therefore a monomorphism. 

LEMMA 2.5. For a p-group of odd-order, f is an isomorphism. 

Proof. Chase an element round diagram (5). 

Recalling R(G)r = Z + I(G),, J(G) = Z + j(G) and v: R(G), + J(G) is given by 
v(n + a) = n + i;(a) for a E Z(G)r , lemma 2.5 implies the main theorem , (since Z(G), = 

Z(G),, by 111.2.4, where N = lG1). 

THEOREM 2.6. For a p-group of odd order N = pe, v: R(G),, + J(G) is an isomorphism. 

We recall the remark of II, $4. This expresses the possibility that E @ C, F @ C may be 
J-equivalent whereas E, F are not. By 2.6, if G is a p-group of odd order, if [E] -[F] = 
[E @ CJ - [F@ q E T(G), then [E] - [F] E W(G). For conjugate representations, we 
may construct J-equivalences using II.4.2 and so E, F are truly J-equivalent. 

Returning to the diagram (5), trivial diagram chasing shows: 

PROPOSITION 2.7. o,, : J(G) + (1 + z)), is a monomorphism. 
From lemma 2.1, if there is a G-map 4: S(E) + S(F) of degree prime to p, then the 

image of [E] - [F] in J(G) is in the kernel of fl,, . Proposition 2.7 gives: 

THEOREM 2.8. Zf there is a G-map cj : S(E) -+ S(F) of degree prime to p, then E and F 
are J-equivalent. 

We now consider W(G), the subgroup of Z(G) generated by {x - ax}, x E R(G), a E r. 
If E is irreducible, it is trivial to see that aE is irreducible also. Thus if lr, . . . , &,, are the 
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classes of irreducible representations, they split up into equivalence classes where each class 
consists of an irreducible representation 5, and the elements of the form a&, for a E F. 

As in chapter II $3, we order the classes or irreducible representations [i, . . . , 5,) . . . ,&,, 

sothatnotwoof<,,...,& are conjugate under the action of I and their conjugates exhaust 

5 i, . . . , &,, . Then W(G) is generated by elements of the form {ti - ati} where 1 I i I s, 
clEr. 

Suppose now E, F are J-equivalent and E is irreducible. We may suppose [E] = 5,. 

If [F] =Czl niti, then [E] - [F] = 5 - cnj ti E W(G) by theorem 2.6. Since ni 2 0 for 
i=l 3 ***, m, immediately we see that [F] = a<, for some CI E F. Putting this fact together 
with theorem 2.8 and 11.4.2 (which says conjugate representations of a p-group are 
J-equivalent) we have : 

THEOREM 2.9. If G is a p-group of odd order and E is an irreducible unitary representation 
of G, then for any unitary representation F, there is a G-map 4 : S(E) + S(F) of degree prime 

to p if, and only iJ; F = crE for some CI E r. 

V. THE REAL CASE 

If U, Vare orthogonal representations of G, as in the complex case, we may formulate 
the problem of when there may exist a G-map of unit spheres S(U) + S(V). 

For a finite group G of odd order, it is easy to show that a non-trivial irreducible 
orthogonal representation space is the underlying real space (having real dimension equal 
to twice the complex dimension) of an irreducible unitary representation. Using the iso- 
morphism R(G),, z J(G), of IV. 2.7, it is a straightforward matter to deduce the theorem: 

‘Given two orthogonal representations U, V of a p-group G (p # 2), where CT is irre- 
ducible, then there exists a G-map 8: S(U) + S(V) of degree prime to p if, and only IX U is 
conjugate to V, that is to say ly, and only if U = $“(V) for k prime to p.’ 

It will be the purpose of Part V to prove this theorem. 

$1. REAL REPRESENTATIONS 

Let G be a finite group of order N; let TN be the Galois group of Q(o) over Q where o 
is a primitive Nth root of unity. Denote by RO(G) the real (orthogonal) representation ring 
of G. This is the free additive abelian group generated by the isomorphism classes of irre- 
ducible real (or orthogonal) representations. As in the case of the complex representation 
ring R(G), the tensor product makes RO(G) into a ring and exterior powers give RO(G) 
a bring structure. 

If U is a real representation space, then U @I C is a complex representation space. This 
construction gives rise to a I-homomorphism c: RO(G) + R(G) which is easily seen to be a 
monomorphism, and so RO(G) is a special I-ring. The Adams operations are defined on 
RO(G) and commute with the map c since it is a I-homomorphism. If x is the character of 
the real representation U, then the complexification CU = U 0 C has the same character. 
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This shows that the character $“(x) of the representation $k( U) is given by [$“(x)](g) = X(g’) 
as in 11.3.1., and in particular the Adams operators are periodic in k on RO(G), in that 

Ic/ N+k = $“. For this reason, RO(G) is a l-,-module where the action of 5, for (k, N) = 1, is 
given by XI+ $“(x). 

The periodicity of the Adams operations makes it possible to define $” acting on R(G) 
and RO(G) for any integer k, possibly negative. In particular, if U is real, II/-‘(U) = U and 
if E is complex, +-l(E) = E, the complex conjugate of E. 

Note that this implies the action of the subgroup { + l} of rN is trivial on RO(G) and 
so the rraction is via the quotient group rN’ = r,/{ + l}. 

Define T : R(G) + RO(G) to be induced by taking the underlying real structure of a 
complex representation. If E is an n-dimensional complex representation, then rE has (real) 
dimension 2n. If we choose a basis in E so that the action of g E G is given by an n x n 
complex (unitary) matrix p(g), writing p(g) = X(g) + iY(g) where X(g), Y(g) are real n x n 
matrices, then the action of g on rE has a 20 x 2n real (orthogonal) matrix 

( 
X(g) Y(g) 
- Y(g) X(g) 1 

Evidently r is an additive homomorphism, but it cannot preserve multiplication since it 
doubles the dimension. 

By considering characters, we see 

and 

rc: RO(G) + RO(G) is multiplication by 2 

cr: R(G) + R(G) takes x H x + S, 

which may be written formally as cr = $l f 11/-l. 

Since c is a I-homomorphism, we have J/k~ = ctik. The map r is certainly not a I-homo- 
morphism, nevertheless we still have r$” = qkr, for any integer k. To prove this, since c is 
a monomorphism, we need only show cr J/k = c $“r. But (cr)rC/” = $‘$I” + $-‘$” = I+!J~ + y5-” 
and c$“r = $kcr = $k(JI1 + I/I-~) = Ii/k + $-k. 

Hence we have: 

PROPOSITION 1.1. r: R(G) --) RO(G) and c: RO(G) -+ R(G) are (additiue group) homo- 
morphisms commuting with rN-action. 

PROPOSITION 1.2 ([18] $222). The only irreducible complex representation of a group of 
odd order whose character takes real values is the trivial representation. 

Proof. See [lo] page 223, or [18] page 294. 
From proposition 1.2 we may immediately deduce: 

PROPOSITION 1.3. A real irreducible representation of agroup of odd order is either the 
identity or the underlying real structure of an irreducible complex representation. 
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$2. J-EQUIVALENCE OF ORTHOGONAL, REPRESENTATIONS 

Let U be an orthogonal representation of G, then S(U) is defined to be the unit sphere 
of U (vectors of length 1). S(U) is a G-space. 

Definition 2.1. If U, V are orthogonal representations of G, then U, V are said to be 

J-equivalent if there exist G-maps 8: S(U) + S(V), 4: S(V) + S(U) of degree prime to 

the order of G. 

Write U N V if U, V are J-equivalent. 

PROPOSITION 2.2. J-equivalence is an equivalence relation on the set of isomorphism classes 
of orthogonal representations such that U, N V,, U, N V, implies U, 0 U, N V, 0 V, . 

Proof. Analogous to 11.2.5. 

PROPOSITION 2.3. If U, V are orthogonal representations of G, then U N V* CU N CV 
and if E, Fare compIex representations, then E N F* rE N rF. 

Proof. S(cU) is homeomorphic to S(U) 0 S(U) as a G-space, and given a G-map 

6 : S(U) --, S(V) of degree k, then 0 0 6’ : S(U) 0 S(U) + S(V) 0 S( V)is a G map of degree k2. 
This proves the first part. 

S(rE) is the same G-space as S(E) and so the second part is trivial. 

Define TO(G) to be the additive subgroups of RO(G) consisting of elements of the form 

[U J - [V] where U, V are J-equivalent and [U] denotes the isomorphism class of U. 
Let JO(G) = RO(G)/TO(G) and then, using the notation of II $2, we have: 

COROLLARY 2.4. r(T(G)) c TO(G) 

c(TO(G)) = T(G) 

COROLLARY 2.5. The following diagrams commute, where the vertical maps are the 
canonical epimorphisms: 

R(G) r + RO(G) RO(G) = + R(G) 

I I I ,I 
J(G) L JO(G) JO(G) = J(G) 

We already know for an M-group G of order N, that if E is a unitary representation of 

G and (k, N) = 1, then E N tik(E). (11.4.2). For an M-group of odd order, propositions 1.1, 

1.3 and 2.3 imply that if U is a non-trivial irreducible real representation, then U N $“(U). 
Also the trivial real representation 1 satisfies $“(1> = L and the identity map from S(l> to 

Sc1) demonstrates 1 N $“@. S ince J-equivalence is additive, we see the canonical map 

RO(G) + JO(G) factors through RO(G),, . Let p: RO(G),, + JO(G) be the induced map, 

then we immediately deduce : 
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PROPOSITION 2.6. For an M-group G of odd order, the following diagrams commute: 

R(G),, - r’N+ RO(G)I-N RO(G),, c=N - R(G),, 

Iv I i* lp C Iv 
J(G) A JO(G) JO(G) - J(G) 

THEOREM 2.1. For a p-group G (p # 2) 

~1 RO(G)r, + JO(G) is an isomorphism. 

Proof. Since RO(G) + JO(G) is epimorphic, so is 

p: RO(G),, -+ JO(G). 

For a p-group G (p # 2), we have v: R(G),, + J(G) is an isomorphism (IV.2.6). 

Suppose p(x) = 0 for x E RO(G),, , then 

c&r) = 0, i.e. v+,(x) = 0. 

This gives c,,(x) = 0 since v is an isomorphism. Hence rTNcrN(x) = 0, i.e. (rc),,(x) = 0. 
But (rc)rN(x) = 2x = 0, and since there is no torsion in RO(G),-, , we have x = 0 and p is 
monomorphic. This shows p : RO(G),, + JO(G) is an isomorphism. 

The remark during the proof of theorem 2.7 ‘ RO(G),-, has no torsion’ is a direct result 
of the fact that IN permutes the (free) generators of RO(G), which are, of course, the classes of 
the irreducible real representations. As in the complex case, we may use this fact to deduce 
from theorem 2.7 the following theorem (proof analogous to IV. 2.9): 

THEOREM 2.8. If G is a p-group of odd order and U is an irreducible orthogonal represen- 
tation of G, then for any orthogonal representation V, there is a G-map 4 : S(U) + S(V) of 
degree prime to p if, and only if, U and V are conjugate, that is to say if, and only if, 
U = J/“(V) for (k, p) = 1. 
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