
 

 *  CHAPTER 1  * 

About this Book 

Mathematics is a subject with patterns that generate enormous pleasure 
for some and problems that cause impossible difficulties for others. The 
situation is exacerbated by different views of what mathematics is and 
how it should be taught. This book takes a journey from the early 
conceptions of the newborn child to the frontiers of mathematical 
research. Its purpose is to present an account that can be shared, not only 
by experts in a wide range of disciplines, but also by teachers and learners 
at all levels, in a manner appropriate for their needs. At its foundation is 
the most fundamental question of all: 

How is it that humans can learn to think mathematically in a way that is 
far more subtle than the possibilities available for other species? 

By focusing on foundational issues and relating them to the long-term 
development of the subject, it becomes possible to express general ideas at 
all levels within a single framework, from the ways in which we make 
sense of the world around us through our perceptions and actions, to the 
development of more sophisticated ideas using language and symbolism. 

Contrary to common belief, new levels of mathematical thinking are 
not necessarily built logically and consistently on previous experience. 
Some experiences at one level may be supportive at the next but others 
may be problematic. For instance, number bonds learnt in whole number 
arithmetic continue to be supportive in fractions and decimals but the 
experience of multiplying whole numbers sets an expectation that the 
product is always larger. This becomes problematic when multiplying 
fractions. Everyday experience tells us that ‘taking something away leaves 
something smaller’. This works for whole numbers and fractions, but it 
becomes problematic when subtracting a negative number. Over time, 
supportive aspects encourage progress and give pleasure, while 
problematic aspects may cause frustration and anxiety that can severely 
impede learning in new contexts. As differing individuals respond in 
varying ways to their experiences, there arises a wide spectrum of 
attitude and progress in making sense of mathematics. 

The foundational ideas in this framework prove to be applicable not 
only in the teaching and learning of mathematics, but also in the study of 
its historical development. Even expert mathematicians begin their lives 
as newborn children and need to develop their mathematical ideas to 
mature levels in their own cultural environment. 

This chapter will lay out all the main ideas of the framework, which 
will then be considered in greater detail in the remainder of the book. 
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1. CHILDREN THINKING ABOUT MATHEMATICS 

John, aged six, sat anxiously at the back of his class as his teacher called 
out the problems. His page had the numbers one to ten down the left-
hand side ready for ten sums in the very first Key Stage One Test in the 
English National Curriculum. ‘Four plus three,’ called the teacher firmly. 
Her instructions were to ask a question every five seconds. John held out 
four fingers on his left hand and three on his right and began to count 
them, pointing at his four left-hand fingers with his right index finger, 
saying silently, ‘one, two, three, four’, switching to his right hand, 
pointing with his left index finger, ‘five, six, sev…’ ‘Six plus two!’ said the 
teacher. John panicked. He did not have time to write his first sum down 
and turned his attention to the second. Six plus two is: ‘one, two, three, 
four, five, six, …’. Again his thought was interrupted as the teacher called: 
‘Four plus two!’ John managed this one: the answer was six. He started to 
write it down, but now he didn’t know which number question he was on 
and wrote it in the space beside the number two. ‘Five take away two.’ 
John wrote ‘three’ in the space beside the number three. So it went on, as 
he sometimes failed to complete the sum in the given five seconds and 
sometimes, when he completed the problem in time, he didn’t know 
where to write the answer. He failed his Key Stage One test, feeling 
glumly that he would never do well in mathematics. It was just too 
complicated1. 

In the same school Peter, not yet five years old, was given a calculator 
that enabled him to type in a sum such as ‘4+3’ on one line then, when he 
pressed the ‘equals’ key, the answer was printed on the next line as ‘7’. He 
and several friends were asked to use these calculators to type in a sum 
whose answer was ‘8’. His friends typed in sums such as  or  or 

, all of which they could also do practically by counting fingers or 
objects. 

Peter typed in the sum  1000000− 999992 . He knew this was ‘a million 
take away nine hundred and ninety nine thousand, nine hundred and 
ninety two’. But, of course, he had never counted a million. Just think 
how long it would take! He could start briskly with ‘one, two, three, four, 
five …’ and keep a moderate pace with ‘one hundred and eighty seven, 
one hundred and eighty eight, one hundred and eighty nine, …’ but he 
would be really struggling with ‘one hundred and eleven thousand two 
hundred and seventy eight, one hundred and eleven thousand two 
hundred and seventy nine, one hundred and eleven thousand two 
hundred and eighty’! 

Peter’s ideas arose not directly from counting experiences, but from 
                                                        
 
1 This episode was observed and videoed by Eddie Gray and myself during a study of how young children 
perform arithmetic operations in Gray (1993) and Gray & Tall (1994). 

 4 + 4  7 +1
 10 − 2
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his knowledge of number relationships. He had clearly been given a great 
deal of support with number concepts outside school. Even so, his 
knowledge was exceptional. He knew about place value, that 10 
represented ten, 100 is a hundred, 1,000 a thousand, and 1,000,000 a 
million. He knew about tens of thousands, hundreds of thousands and 
that a million was a thousand thousands. He knew that 9 and 1 makes 10, 
39 and 1 makes 40, 99 and 1 makes a hundred, and 999,999 and 1 makes a 
million. For him it was straightforward to see that just as the sum 92 and 8 
gives 100, the sum of 992 and 8 gives a thousand, and 999,992 and 8 is a 
million.2 

Here we have two children in the same school at about the same age 
thinking very differently. Can we find a single theoretical framework that 
encompasses both? Do they both go through the same kind of 
development, where one happens to be more successful than the other? 
How can we formulate a single theory that enables us to improve the 
teaching and learning of mathematics in a world where some find 
mathematics an amazing thing of beauty while others find it a source of 
problematic anxiety? 

To seek a unified theory of the development of mathematical thinking, 
this book focuses on two complementary aspects: the fundamental 
operation of the human brain and the long-term development of 
mathematical knowledge. 

2. THE LONG-TERM DEVELOPMENT OF MATHEMATICAL IDEAS 

Mathematical thinking uses the same mental resources that are available 
for thinking in general. At its foundation is the stimulation of links 
between neurons in the brain. As these links are alerted, they change 
biochemically and, over time, well-used links produce more structured 
thinking processes and more richly connected knowledge structures3. The 
strengthening of useful links between neurons provides new and more 
immediate paths of thought, so that processes that occur in time—such as 
counting to add numbers together to get  3+ 2  is 5—are shortened to 
operate without counting, so that  3 + 2  immediately outputs the result 5. 
This involves a compression of knowledge in which lengthy operations are 
replaced by immediate conceptual links. 

The long-term development of mathematical thinking is consequently 
more subtle than the addition of new experiences to a fixed knowledge 
structure. It is a continual reconstruction of mental connections that 
                                                        
 
2 This episode was recorded by Eddie Gray as part of the same study in the same school. 
3 The term ‘knowledge structure’ may have various connotations in cognitive science, philosophy and other 
disciplines. Here I refer broadly to the relationships that exist in a particular context or situation, including 
various links between concepts, processes, properties, beliefs and so on. 



1-4 

evolve to build increasingly sophisticated knowledge structures over 
time. 

Geometry begins with the child playing with objects, recognizing their 
properties through the senses and describing them using language. Over 
time, the descriptions are made more precise and used as verbal 
definitions to specify figures that can be constructed by ruler and 
compass and eventually the properties of figures can be related in the 
formal framework of Euclidean geometry. For those who study 
mathematics at university, this may be further generalized to different 
forms of geometry, such as non-Euclidean geometries, differential 
geometry and topology. (More advanced topics mentioned in this first 
chapter will feature in later chapters, where they will be given elementary 
explanations for the general reader.) 

The learning of arithmetic follows a different trajectory, starting not 
with a focus on the properties of physical objects, but on actions performed 
on those objects, including counting, grouping, sharing, ordering, adding, 
subtracting, multiplying, dividing. These actions become coherent 
mathematical operations and symbols are introduced that enable the 
operations to be performed routinely with little conscious effort. More 
subtly, the symbols themselves may be seen not only as operations to be 
performed but also compressed into mental number concepts that can be 
manipulated in the mind. 

Young children are introduced to counting physical objects to develop 
the concept of number and to learn to calculate with numbers. As they 
learn to count, they will find that  7 + 2  calculated by counting 2 after 7 to 
get ‘eight, nine’ is much easier than  2 + 7  by counting 7 after 2 as ‘three, 
four, five, six, seven, eight, nine.’ Initially it may not be evident that 
addition by counting is independent of order, but when this is related to 
the visual layout of objects placed in various ways, properties of 
arithmetic emerge, such as addition and multiplication being independent 
of order of operation and multiplication being distributive over addition. 
These observations may be formulated as ‘rules’ of arithmetic. At a more 
advanced level, the whole numbers may be formulated in terms of a list 
of axioms (the Peano Postulates) from which familiar properties of 
arithmetic may be deduced as theorems. 

Measurement also develops out of actions: measuring lengths, areas, 
volumes, weights and so on. These quantities can be calculated practically 
using fractions or to any desired level of accuracy using decimals. 
Numbers can be represented as points on a number line, and formulated 
at university level as an axiomatic system (a complete ordered field). 

Algebra builds on the generalized operations of arithmetic with 
symbolic manipulations following the rules observed in arithmetic. 
Algebraic functions may be visualized as graphs, and later algebraic 
structures may be formulated in various axiomatic systems (such as 
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groups, rings, fields). 
Likewise, concepts in the calculus can be expressed visually and 

dynamically as the changing slope of a graph and the area under a graph, 
which may be approximated by numerical calculations or expressed 
precisely through the symbolic formulae for differentiation and related 
techniques for integration. At university these ideas may be expressed 
axiomatically in the formal theory of mathematical analysis. 

Vectors are introduced as physical quantities with magnitude and 
direction, written symbolically as column vectors and matrices, and later 
reformulated axiomatically as vector spaces. 

Probability begins by reflecting on the repetition of physical and 
mental experiments to think how to predict the likely outcome, then 
performing specific calculations to calculate the probability numerically, 
later formulating the principles axiomatically (as a probability space). 

These developments incorporate three distinct forms of knowledge. 
Geometry studies objects and their properties, leading to mental imagery 
described in language that grows in increasingly subtle ways. A second 
form of knowledge grows out of actions that are formulated using 
symbolism. The highest level in both cases involves the formal definition 
of axiomatic systems and deduction of properties by mathematical proof.  

The first two types of knowledge are developed in school and 
continue into a wide range of applications. The third flowers in the formal 
approach to pure mathematics encountered at university. The framework 
presented in this book takes the development of these three forms of 
knowledge as a foundation for the growth in sophistication of 
mathematical thinking from the activities of the child to the frontiers of 
mathematical research. (Figure 1.1.) 

 
Figure 1.1: An initial outline of three forms of knowledge in mathematics 

Axiomatic)Formal)Mathematics
based&on&formal&definitions&of&properties
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graphs,&diagrams&etc

Operations
&)their)properties
e.g.&&counting,&sharing
symbolized&as

number)concepts

generalized)in)algebra
as&algebraic&expressions&using

operations&experienced&in&arithmetic
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3. EXISTING THEORETICAL FRAMEWORKS 

We are already privileged to have many frameworks available to provide 
an overview of human development in general and mathematics in 
particular. The father figure of modern developmental psychology, Jean 
Piaget4, formulated a stage theory for the long-term development of the 
child through the pre-language sensori-motor stage, a pre-operational stage 
in which children develop language and mental imagery from a personal 
viewpoint, a concrete-operational stage where they develop stable 
conceptions of the world shared with others, and a formal-operational stage 
developing the capacity for abstract thought and logical reasoning. 

Jerome Bruner5 classified three modes of human representation and 
communication: enactive (action-based, using gestures), iconic (image-
based using pictures and diagrams) and symbolic (including language and 
mathematical symbols). 

Efraim Fischbein6 focused on the development of mathematics and 
science, and formulated three different approaches, which he called 
intuitive, algorithmic and formal. 

Each of these frameworks presents a long-term development from 
physical perception and action, through the development of symbolism 
and language and on to deductive reasoning. They also formulate 
different ways of building specific concepts. Bruner and Fischbein differ 
in detail, but both see a broad conceptual development in which the 
enaction and iconic imagery of Bruner relates to the intuition of Fischbein 
while Bruner’s symbolic mode of operation includes two special forms of 
symbolism in arithmetic and logic (relating respectively to mathematical 
algorithms and formal proof). 

Piaget complements his global stage theory by formulating several 
ways in which new concepts are constructed. The first is empirical 
abstraction through playing with objects to become aware of their 
properties (for instance, to recognize a triangle as a three-sided figure and 
to distinguish this from a square or a circle). 

The second is pseudo-empirical abstraction through focusing on actions 
on objects. This plays a major role in arithmetic where operations such as 
counting and sharing lead to concepts such as number and fraction. 

He also formulates reflective abstraction where operations at one level 
become mental objects of thought at a higher level. This has proved to be 
fruitful in describing how addition becomes sum, repeated addition 
becomes product, a generalized operation in arithmetic becomes an 
expression in algebra, and so on. Reflective abstraction is essentially a 

                                                        
 
4 References on Piaget’s Stage Theory are numerous. See, for example Baron et al (1995), pp. 326-329. 
5 Bruner (1966), pp. 10,11. 
6 Fischbein (1987). 
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succession of higher-level extensions of pseudo-empirical abstraction. 
By analogy, there is a fourth type of abstraction that generalizes 

empirical abstraction of the properties of objects, conceiving mental 
objects such as points with no size, and straight lines having no width 
that can be extended as far as desired in either direction. This may be 
termed platonic abstraction as it forms platonic mental objects by focusing 
on the essential properties of figures. (Figure 1.2.) 

 
Figure 1.2: Piagetian and Platonic Abstraction 

These four types of abstraction belong naturally to two long-term 
developments, one building from the properties of objects (empirical and 
platonic abstraction), the second from actions on objects (pseudo-
empirical and reflective abstraction). These two developments relate 
directly to the first two forms of long-term development in mathematical 
thinking formulated earlier. The first focuses on the structure of objects, 
the second on actions that become operations. I shall refer to these as 
structural abstraction and operational abstraction. (Figure 1.3.) 
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Figure 1.3: Long-term Abstraction 

These ideas relate to the vision of Pierre van Hiele’s Structure and Insight7 
in geometry, and Anna Sfard’s formulation of operational and structural 
conceptions8 in general mathematical thinking, which will evolve into 
essential aspects of the wider framework developed in this text. 

While elementary recognition of shape and number is found in other 
species, only Homo sapiens develops sophisticated mathematical ideas 
such as the theorem of Pythagoras, or the idea that there are an infinite 
number of primes. This intellectual development arises through the 
development of language and symbolism, which Terence Deacon 
characterizes by recognizing Homo Sapiens as The Symbolic Species9. 

Mathematical thinking begins in human sensori-motor perception and 
action and is developed through language and symbolism. In Philosophy 
in the Flesh10, George Lakoff and Mark Johnson formulate the idea of an 
‘embodied concept’ as ‘a neural structure that is actually part of, or makes 
use of, the sensori-motor system of our brains.’ This analysis is consonant 
with a combination of Bruner’s enactive mode operating ‘through action’ 
and iconic mode that ‘depends upon visual or other sensory organization 
and upon the use of summarizing images.’11 

In Where Mathematics Comes From12, Lakoff and Núñez take the 
argument further to declare that ‘all human thought is embodied through 
our sensori-motor experience’; this applies in particular to mathematics. 

This classification of all human thought into a single category of 
embodiment can be usefully enhanced by a subdivision into 
subcategories that operate in clearly different ways. The term ‘sensori-
motor’ already refers to two different aspects of the brain: the sensory part 
                                                        
 
7 Van Hiele (1986). 
8 Sfard (1991). 
9 Deacon (1997). 
10 Lakoff & Johnson (1999). 
11 Bruner (1966), pp. 11-12. 
12 Lakoff & Núñez (2000). 
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relating to how we perceive the world through our senses and the motor 
part relating to how we operate on the world through our action. This 
relates directly to the distinction made in this text between the sensory 
appreciation of shape and space focusing on the structural properties of 
objects and the operational motor activities such as counting and sharing 
that lead on to arithmetic and algebra. 

In his earlier book on Women, Fire and Dangerous Things13, Lakoff refers 
briefly to two different aspects of embodiment that he terms conceptual 
embodiment and functional embodiment. The former refers to the use of 
mental images and the latter to ‘the automatic, unconscious use of 
concepts without noticeable effort as part of normal functioning.’ 

This distinction is not used, as far as I know, in any other work of 
Lakoff. Yet it resonates strongly with the contrast I noted above between a 
structural focus on properties of objects and an operational focus on actions 
symbolized as mathematical operations. 

I shall use the term ‘conceptual embodiment’ to refer to the use of 
mental images, both static and dynamic, that arise from physical 
interaction with the world and become part of increasingly sophisticated 
human imagination. This includes the use of physical embodiments such 
as Dienes’ blocks to relate to mental conceptions of numbers and 
arithmetic.14 It also extends to the drawing of geometrical figures that 
become mental pictures described verbally in Euclidean geometry, the 
representation of functions and graphs as static images on paper, and 
dynamic visual images in general, as visualized using computer graphics 
or solely within the mind. 

Meanwhile, the manipulation of symbols in arithmetic and algebra 
has a functional aspect in which symbols are imagined as being shifted 
around mentally on the page. This functional embodiment is intimated in 
phrases such as ‘turn upside down and multiply’, ‘change sides, change 
signs’, ‘put over a common denominator and add’, or ‘shift all the terms 
in x on one side and all the numbers on the other.’ 

This gives two different ways in which mathematical thinking grows: 
the use of mental images supported by language to enable us to refine 
and develop more sophisticated meanings, and the use of symbolism in 
arithmetic and algebra to formulate problems as operational equations, to 
solve them by calculation and symbolic manipulation. These two forms of 
growth occur throughout schooling before the later development of a 
formal axiomatic approach arises in the work of pure mathematicians. 
This overall development is based on three fundamental human 
attributes: input through the senses that recognizes properties of objects, 
output through actions that become routine operations, and language 
                                                        
 
13 Lakoff (1987) pp. 12–13. 
14 Dienes (1960). 
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(together with symbolism) which supports both, to develop increasingly 
sophisticated ways of thinking about mathematical ideas. 

4. SYMBOLS AS PROCESS AND CONCEPT 

The symbols that occur in arithmetic and algebra are used in special 
ways. Not only do they specify operations that can be performed as a 
sequence of steps, they also operate as mental entities that can themselves 
be operated upon. This offers a mode of operation that is different from 
the usual linguistic analysis for speaking about numbers. 

Number words are often interpreted as adjectives or nouns, such as 
‘three’ as an adjective in ‘the three musketeers’ and a noun in ‘three is a 
prime number.’ In English, words freely function as various parts of 
speech, for instance, the term ‘abstract’ can be an adjective in ‘an abstract 
idea’, a noun in ‘an abstract taken from a book’ or a verb ‘to abstract ideas 
from a concrete situation.’ Actions are often transformed into nouns, such 
as the way in which the word ‘running’ in ‘John is running’ becomes 
‘Running is good for your health.’ The participle ‘running’ becomes a 
noun using the linguistic device that is called a ‘gerund’. 

However, this analysis into various parts of speech fails to capture the 
subtle ways in which we think about the process of counting and the 
concept of number. Numbers are not only used as adjectives or nouns. An 
expression in arithmetic such as ‘ 3 + 4 ’ operates flexibly as an instruction 
to calculate the result in ‘what is  3 + 4 ?’ and also as a noun, the name of 
the result of the calculation  3 + 4 , which is 7. The symbol  3 + 4  operates 
both as a process (addition) and a concept (the sum). 

Throughout the development of symbolism in arithmetic and algebra, 
the child learns to carry out an operation, to practice it until it becomes 
routine, and then to use it as a thinkable concept. A young child spends 
many months grasping the process of pointing and counting to find the 
number of elements in a set is independent of the sequence of counting 
and this becomes the related concept of number. 

Likewise, an algebraic expression, such as   2x + 6 , may be interpreted 
both as a process of evaluation (twice the value of x plus 6) and also as a 
concept of algebraic expression that may itself be operated on. For 
instance, it can be factorized to give the product   2(x + 3) . As a process, 
  2(x + 3)  involves a different sequence of steps (double the result of adding 
the value of x and 3). However, in algebraic manipulation, the expressions 
  2x + 6  and   2(x + 3)  are interchangeable, so they may be considered as two 
different ways of writing the same thing. This gives a new flexibility in 
using symbols that occurs naturally and unconsciously for experts, but 
may need to be learnt explicitly by the novice. 

Symbols that operate dually as both process and concept in this way 
give rise to a new part of speech in the language of mathematics, that 
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Gray and Tall named a procept.15 As the child relates various ways of 
calculating the same result, different symbols such as  7 + 3 ,  3 + 7 ,  13 − 3  
may then be reconsidered as being different ways of writing the same 
procept. The procept here is the number 10 and all other possible ways 
that an individual thinks about it to manipulate it flexibly in arithmetic. 
Over time it grows in richness to encompass many other connections such 
as  5× 2 ,  20 ÷ 2 ,  (−5) × (−2)  and even   −10i2 . Flexible use of such 
symbolism to derive new relationships and to build a rich structure of 
flexible alternatives is called proceptual thinking. It manifests itself in early 
arithmetic as symbols are decomposed and recomposed to perform 
calculations. For example, the sum  7 + 6  might be calculated by realizing 
that  7 + 3  is 10 and the 6 can be seen as  3 + 3 , so that  7 + 6  is  10 + 3 , 
which is 13. Later a student may factorize the expression 
  (2x + 3)2 − (x + 2)2  by recognizing the whole expression as the difference 
between two squares   A2 −B2  and writing the solution   (A −B)(A +B)  in 
one operation as   (x +1)(3x + 5) . A procedural thinker operating step by step 
is faced with a more lengthy sequence of operations, first multiplying out 
the expression to get 

  (2x + 3)2 − (x + 2)2 = 4x2 +12x + 9 − x2 − 4x − 4  
then simplifying the expression to get 

  3x2 + 8x + 5  

and then factorizing this into a product of two factors using a fairly 
complex algorithm. 

Proceptual thinking is important not only in deriving facts in 
arithmetic, it is also essential in the flexible manipulation of algebra, and 
in the long-term development of powerful mathematical thinking.16 

5. COMPRESSION OF KNOWLEDGE 

The manner in which a process carried out in time can eventually be 
conceived as a mental concept independent of time is an example of a 
more general mental process to think of complicated situations in simple 
ways. 

Compression of knowledge occurs when a phenomenon of some kind is 
conceived in the mind in a simpler or more efficient manner. This occurs 
through making more direct mental connections in the brain and is 
enhanced by using language to give the concept a name and to be able to 
share ideas about its properties and relationships to other concepts. 

                                                        
 
15 Gray & Tall (1994). 
16 Gray, Pitta, Pinto & Tall (1999). 
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Compression of knowledge occurs in several different ways. We are 
able to recognize things through our perception of similarities and 
differences, to categorize concepts in a whole variety of ways, giving a 
name to identify the category, such as ‘dog’ or ‘triangle’. This is a 
structural abstraction of the properties of a concept, drawing them 
together into a single named entity. 

A second method involves the practicing of a sequence of actions as a 
procedure so that they can be performed with little mental effort. The 
further compression of a process (such as addition) being compressed into 
a mental concept (such as sum) is an operational abstraction termed the 
encapsulation of a process as a concept. 

A third method occurs as individuals use increasingly sophisticated 
language to specify concepts through definition. This is, of course, a special 
case of categorization. However, instead of starting with a concept and 
categorizing its properties, the situation is reversed by specifying the 
definition and deducing all other properties from it. 

In the framework developed in this book, mathematical thinking is 
seen to use categorization, encapsulation and definition in a variety of 
ways to compress ideas into more flexible forms. 

The development of geometry begins with the categorization of 
objects through visual and tactile experience. Language enables this 
categorization to become more refined through a succession of structural 
abstractions as properties are recognized, described, defined and then 
used to prove properties in geometry. 

Symbolic thinking in arithmetic and algebra begins with operations 
using numbers to count objects, then fractions to measure quantities, and 
more sophisticated representations using signed numbers, finite and 
infinite decimals. Each stage involves the encapsulation of an arithmetic 
process as a number concept, and there is a growing divergence (which 
Gray and Tall17 termed ‘the proceptual divide’) between those who 
remain entrenched at best in the procedures of counting and those that 
develop more flexible proceptual thinking. 

Operations in arithmetic may be seen to have properties that may be 
recognized, described, and then defined as rules of arithmetic. This also 
leads to the numbers constructed having properties that enable us to 
speak of odd numbers, even numbers, prime numbers, and to consider 
profound relationships, such as the idea that every whole number can be 
factorized uniquely into primes. The development of these ideas again 
involves recognizing, describing, defining and deducing properties of 
symbolic constructs. The world of operational symbolism therefore also 
involves a structural abstraction of the properties of procepts as the use of 

                                                        
 
17 Gray & Tall (1994). 
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symbols becomes increasingly sophisticated. 
At the formal level, a new form of abstraction occurs which takes 

mathematical thinking onto a new level. The mental processes of 
structural abstraction (operating on objects to discover their properties) 
and operational abstraction (operating on objects to discover the 
properties of the operations) are extended to formal abstraction (operating 
on formal definitions to deduce new formal properties). This gives three 
forms of abstraction in mathematics in which each new form of 
abstraction builds on and incorporates earlier forms. (Figure 1.4.) 

 
Figure 1.4: Three forms of abstraction 

The introduction of formal abstraction involves a significant change in 
meaning. Whereas structural abstraction and operational abstraction 
build from perceptual ideas that become conceptualized as mathematical 
concepts, formal abstraction builds essentially on definitions formulated 
linguistically. Subconsciously there may continue to be links with 
perception and action, but formally, it offers a new, universal approach to 
mathematics in which the theorems proved depend only on definition 
and proof and not on the particular context. 

6. THREE WORLDS OF MATHEMATICS 

The previous discussion highlights three essentially different ways in 
which mathematical thinking develops18: 

Conceptual embodiment builds on human perceptions and actions 
developing mental images that are verbalized in increasingly sophisticated 

                                                        
 
18 This was first described in Gray & Tall (2001). 
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ways and become perfect mental entities in our imagination. 
Operational symbolism grows out of physical actions into mathematical 
procedures. While some learners may remain at a procedural level, others 
may conceive the symbols flexibly as operations to perform and also to be 
operated on through calculation and manipulation.19 
Axiomatic formalism builds formal knowledge in axiomatic systems 
specified by set-theoretic definition, whose properties are deduced by 
mathematical proof. 

Each of these ways of working develops in sophistication over time, using 
increasingly subtle forms of language. They are more than different 
modes of operation. Each one has a quality of its own in a world that 
develops in its own special way. One is based on (conceptual) 
embodiment, one on (operational) symbolism, and the third on 
(axiomatic) formalism, as each one grows from earlier experience. 

Embodiment includes both perception and action where actions 
operate on objects to tease out their properties, later developing formal 
aspects in Euclidean proof. The overlap of embodiment and symbolism 
focuses on embodied actions on objects, such as counting, which develop 
into symbolic operations with numbers. Algebraic manipulation develops 
symbolic formal proof based on the rules of arithmetic. Both lead on to 
formal mathematical proof from set-theoretic definitions. (Figure 1.5.) 

 
Figure 1.5: Preliminary outline of the development of the three worlds of mathematics    

To be able to refer to these links between worlds, I will often compress the 
names to ‘embodiment’, ‘symbolism’ and ‘formalism’ to allow the term 
‘embodied symbolism’ to refer to the transition between conceptual 
                                                        
 
19 Initially the world of operational symbolism was named as ‘proceptual symbolism’ to represent the desirable 
form of flexible symbolic thinking. It is now referred to as ‘operational symbolism’ to include all forms of 
operations in arithmetic and algebra, to include both flexible (proceptual) and rote-learnt procedural. 
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embodiment and operational symbolism, ‘embodied formalism’ to refer 
to Euclidean proof, and ‘symbolic formalism’ to refer to algebraic proof 
using the ‘rules of arithmetic’. 

For some time I wondered which way round I should use the pairs of 
words. For instance, should I speak of ‘embodied formalism’ or ‘formal 
embodiment’? The answer to this question lies in the manner in which the 
link is approached. Looking at embodiment becoming increasingly 
formal, it seemed more appropriate to use the term ‘formal embodiment’, 
likewise, as symbolism becomes more formal, then the term ‘formal 
symbolism’ would be more appropriate. However, if one looks at the final 
picture, one can look from above to see formalism subdivided into three 
distinct forms, ‘embodied formalism’, ‘symbolic formalism’ and 
‘axiomatic formalism’. 

I also realized the need for a certain flexibility in the use of the term 
‘formal’. As a mathematician, ‘formal’ refers to mathematics based on set-
theoretic definitions and formal proof. As an educator, I realize that the 
term ‘formal’ is used in a different way to refer, for example, to the 
‘formal operational’ stage of Piaget. Even in figure 1.5 I have used the 
term ‘formal’ to cover the three forms of ‘embodied formal’, ‘symbolic 
formal’ and ‘axiomatic formal’. The convention I have adopted is to be 
flexible about the terminology to use it as seems appropriate at any given 
time. When I use the term ‘formal’ on its own without any qualifier, I will 
use it in the mathematical sense referring to formal set-theoretic 
mathematics. 

The picture of the three-world development in figure 1.5 also applies 
to the development of long-term reasoning and proof. I will distinguish 
three stages of development across the full range of mathematics. The 
initial stages involving practical experience of space and shape and 
calculations in arithmetic I shall call ‘practical mathematics’. This involves 
initial experiences in recognizing and describing the properties of figures 
that occur simultaneously without necessarily realizing that one property 
may imply another. 

The next broad stage will be termed ‘theoretical mathematics’. In 
geometry this includes Euclidean definition and proof where the term 
‘theoretical’ was applied by van Hiele to cover the use of definitions and 
Euclidean proof. In symbolic mathematics it includes the shift to algebra 
and proof of identities in algebra based on ‘the rules of arithmetic’. 
Theoretical mathematics includes the more sophisticated levels of 
embodiment and symbolism that are entitled embodied formal and 
symbolic formal. 

The third stage will be termed ‘formal mathematics’ to refer to the  
‘formalism’ in mathematics, based on set-theoretic definitions and 
deductions. (Figure 1.6.)  
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Figure 1.6 practical, theoretical and formal mathematics 

Transitions from one world to another combine aspects of both worlds. 
For instance, the shift from embodiment to symbolism involves embodied 
actions on objects, such as counting, which lead to symbolic concepts such 
as number. Embodied actions, such as starting with a set of six objects 
subdivided into four and two, then moving the objects around, enable the 
learner to see properties of arithmetic, such as  4 + 2  is the same as  2+ 4 , 
embodying the general property that addition is commutative.  

The transition has two subtly different aspects. Embodied compression 
of operations into mental concepts focuses on the visible effect of the 
operations, which embodies general properties of the operations, such as 
the idea that addition is commutative. Operational compression focuses on 
the operations themselves as the individual practices them to learn 
specific number facts. Flexible ability in arithmetic requires both an 
appreciation of the general properties of operations and also the specific 
details of calculation. These subtle difficulties will play an important role 
in the flexible understanding of arithmetic and its generalization into 
algebra. 

In the literature, the terms ‘embodiment’, ‘symbolism’ and ‘formalism’ 
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used with a variety of meanings, which will be discussed in detail in 
chapter six. In this text, they will be used with the meanings given here. 

Conceptual embodiment builds from human perceptions and actions, 
becoming increasingly refined and supported by language to rise to a 
level of mental thought experiment and formal embodiment. Operational 
symbolism in arithmetic and algebra builds from operations that may be 
compressed into symbols to be manipulated to solve problems and the 
properties of the operations are used to act as a basis for formal 
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development of symbolism. Out of the experiences, axiomatic formal 
mathematics develops from set-theoretic definitions and formal proof. 

The transition to (axiomatic) formal mathematics not only shifts 
mathematical thinking to a new level where theorems are proved that do 
not depend on specific embodiments and specific methods of calculation. 
It will be shown that formal mathematics can lead to proving ‘structure 
theorems’ that specify the structure of an axiomatic system, giving it new 
forms of embodiment and symbolism, deduced formally from the axioms. 
The growth in sophistication from embodiment to symbolism and on to 
formalism therefore leads back into human embodiment and operational 
symbolism, completing the circle and underlining the integration of the 
three worlds of mathematics into a single overall structure. 

Different individuals cope with their journeys through the worlds of 
mathematics in different ways. For instance, in the world of operational 
symbolism, some students may learn to operate procedurally with the 
operations but may be less successful in developing flexible ways of 
dealing with the symbols as manipulable concepts. In the world of 
axiomatic formalism, some may build ‘naturally’ from embodied and 
symbolic experience, some may build ‘formally’ from the written 
definitions, while others may attempt to pass examinations by learning 
proofs procedurally by rote. 

It will be part of our journey through the three worlds to consider 
how different individuals develop a spectrum of approaches to 
mathematical thinking. It will also allow us as individuals to stand back 
and reflect on our own personal ways of thinking so that we may become 
aware of the nature of our own personal growth and reflect on the 
different ways in which individual development occurs. 

7. ATTRIBUTES THAT WE ALL SHARE 

In our discussion so far, three distinct worlds of mathematics have been 
proposed, developing in different ways. These worlds are not arbitrary. 
They develop based on distinct essential features that we all share. 

The first of these is our sensory capacity for recognition to see patterns, 
similarities and differences that we express in language to categorize 
objects such as ‘dog’, ‘cat’, and ‘triangle’. 

The second builds on our motor capacity for repetition that enables us 
to practice sequences of actions until we can perform them automatically 
as sequential operations with little conscious thought. 

The third is our fundamentally human ability for language. This 
enables us to give names to phenomena, to talk about them and refine 
their meaning, so that they become thinkable concepts that we can talk 
about and make mental connections to build up sophisticated knowledge 
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structures. Language, including the use of mathematical symbols, raises 
our mathematical thinking to successively higher levels. 

Language enhances recognition by enabling us to categorize objects 
and phenomena, to give them names, to talk about them and refine their 
meaning, to compress knowledge into thinkable concepts that we can use 
to build more sophisticated knowledge structures. 

Language enhances repetition through the ability to give a name to 
the process, to encapsulate it as a thinkable concept that can be mentally 
manipulated in its own right. Now a process that is performed as a 
sequence of actions in time is compressed into a single entity that can 
operate at a higher level of thought. Complex ideas are then expressed in 
ways that are both sophisticated and simple. 

Christopher Zeeman expressed this succinctly, saying: 
Technical skill is mastery of complexity while creativity is mastery of 
simplicity. 20 

Mathematical thinking requires technical skill to make calculations and 
manipulate symbols. It can enable the individual to solve routine 
problems and perform well on standardized examinations. Creative 
mathematical thinking requires more. It requires knowledge structures 
connected together in compressed ways that make complex ideas 
essentially simple. 

8. ATTRIBUTES BUILT ON EXPERIENCE 

Intellectual development depends on how we use our experiences to cope 
with new situations. Learning at one stage can affect how we think at the 
next. A child will learn that when something is taken away, what is left is 
less. If you start with five apples and take away three, then only two are 
left. This experience serves the child well in everyday life. It is even taken 
as a common notion in Euclid, that ‘the whole is greater than the part’. 
Yet this property that we all share becomes problematic in mathematics 
when we attempt to take away a negative number. Here starting with 5 
and taking away –2 gives 7. Taking away a negative number gives more. 
Likewise, early experience of arithmetic with whole numbers tells us that 
multiplication gives a bigger result, and this causes great difficulty when 
the product of two fractions can be smaller than either of them. 

In Metaphors We Live By,21 Lakoff and Johnson theorized that our 
thinking involves metaphors, using ideas from previous experience to 
refer to a new experience in a different context. This enables the biological 
brain to re-use existing connections to make sense of new phenomena. 
                                                        
 
20 Zeeman (1977). 
21  Lakoff & Johnson (1980). 
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However, the term ‘metaphor’ is part of a sophisticated framework to 
explain a subtle aspect of thought from an expert viewpoint. In 
developing a framework for mathematical thinking from child to adult it 
is essential to look at the development as it appears to the learner, for it is 
this view that is directly involved in learning. I therefore sought another 
possible way of talking about previous experience that could be used in 
conversation not only from a top-down expert viewpoint, but also from a 
bottom-up development that could be of value to teachers and learners. 

9. SET-BEFORE AND MET-BEFORE 

As I mused on the word ‘metaphor’, I imagined it being said as ‘met-
afore’, using the old English word ‘afore’ to relate it to experiences that 
had been met before in the life of the child. Initially this was an amusing 
joke that did not raise many laughs in others. Then I changed the word to 
‘met-before’ and the new form not only sounded different, the play on 
words from ‘metAphor’ to ‘metBefore’ enabled the term to be used easily 
in conversation22. It became possible to say to a learner: ‘What have you 
met before that makes you think that?’ The term ‘met-before’ also proved 
amenable in talking to other experts, who seemed to take it up 
immediately and use it in their own conversation. It operated in the way 
that new words operate, first as a name, with its properties to be 
described and then to be defined, at least in the sense of a dictionary 
definition. A working definition of a ‘met-before’ is ‘a structure we have 
in our brains now as a result of experiences we have met before.’ 

A met-before can be supportive in a new situation, or it can be 
problematic23. For instance, the met-before ‘2+2 is 4’ is supportive not 
only in its original context of counting objects or fingers, but throughout 
the development of number systems to real numbers and even complex 
numbers. The met-before ‘take away leaves less’ works for whole 
numbers, even for (positive) fractions, but it is problematic with negative 
numbers, where taking away a negative number gives more. It is also 
problematic in the theory of infinite cardinal numbers where two sets are 
defined to have the same cardinal number (allowing us to say they are the 
same size) if their elements can be placed in one-one correspondence. The 
set of natural numbers and its subsets of even numbers and odd numbers, 
all have the same cardinal number using the mapping from n to 2n to

                                                        
 
22 The term met-before is a play on words that works well in English. It translates less well in other languages 
where other terminology may be necessary. 
23 The idea of problematic met-before has a long history in mathematics and science education where it arises as 
an ‘epistemological obstacle’. (Bachelard, 1938). However, the earlier usage often referred to intuitive ideas that 
cause difficulty in later theoretical applications. Here the term met-before applies to any earlier experiences that 
affect current thinking. 
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  2n −1 . Taking away the even numbers from the natural numbers leaves 
the odd numbers which are the same size as the full set. 

In this way, a met-before (take away leaves less) can be supportive in 
some contexts (whole numbers, lengths, areas) yet problematic in others 
(negative numbers, infinite cardinal numbers). The manner in which 
individuals deal with these aspects and the resulting emotional effects 
plays a major role in individual development of mathematical thinking. 

As the term ‘met-before’ was used in conversation, it led naturally to 
the introduction of the term ‘set-before’ to describe the fundamental 
attributes that we all share. A working definition of a set-before is ‘a 
mental structure that we are born with, which may take a little time to 
mature as our brains make connections in early life.’ 

At this point I realized that the capacities of recognition and repetition 
are set-befores that we all share, based on our human capacities for 
perception and action. Meanwhile language is a further set-before specific 
to Homo Sapiens that enables us to develop more sophisticated thinking. 

This offers a global long-term framework for the development of 
mathematical thinking, based on the three set-befores of recognition, 
repetition and language, with three distinct ways of forming 
mathematical concepts through categorization, encapsulation and 
definition, building on met-befores. 

10. BLENDING KNOWLEDGE STRUCTURES 

The journey to develop powerful mathematical thinking involves 
compressing knowledge into thinkable concepts and connecting them 
together in knowledge structures. One further construct is required: the 
blending24 of different knowledge structures into a new knowledge 
structure, perhaps leading to a newly created thinkable concept. 

Our biological brains evoke thinkable concepts by a selective binding 
of neural structures involving a range of senses and perceptions. An apple 
conjures up aspects of vision, touch, and smell. A red apple may offer the 
further promise of a sweet taste. This thinkable concept is a blend of 
neural structures.25 

Likewise, a mathematical concept evokes a range of different 
cognitive structures, blending together different experiences to produce a 
single mental construct. 

                                                        
 
24 See, for example, Lakoff & Núñez (2000), Fauconnier & Turner (2002). 
25 See, for example, Fauconnier and Turner (2002), who build a detailed theory of blending domains of 
knowledge where the blend contains elements from both domains and also new emergent properties that arise 
from the blend. In this text, the notion of blending will refer to different forms of mathematical representation 
that have some elements that correspond and others which may be problematic yet have the potential to lead to 
new emergent properties. 
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The real number system is a blend of embodiment, symbolism and 
formalism in which each contributes different aspects to our 
understanding of number (figure 1.7). The number line allows us to see 
numbers as points on a horizontal line in order from left to right. If we 
point at the number zero and slide a finger along to the number 1 we may 
imagine we are moving continuously through all the numbers from 0 to 1. 
However, if we think of a number as an infinite decimal, it is impossible 
to imagine the decimal expressions running through all the possible 
decimals between 0 and 1 in a finite time. 

 

Figure 1.7 The real numbers as a blend 

Blending ideas together from different contexts usually involves some 
aspects that are common and some that are in conflict. This leads to a 
divergence between those who focus on the power of the common aspects 
and those who are concerned about the differences. 
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integers. This will be termed an extensional blend. In this case the 
arithmetic of counting numbers is supportive, but the met-before 
‘takeaway makes less’ becomes problematic. 

The whole development of number—from whole number to fraction, 
to positive and negative numbers, to finite and infinite decimals 
represented as points on a number line—is a succession of extensional 
blends, broadening one number system to a larger one with richer 
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meaning and the complications of the operations often become 
problematic.  

Blending offers creativity as mathematical thinking develops in 
history as well as in the individual. By blending the arithmetic of 
numbers with the geometric transformations of the plane, a whole new 
concept of complex number was created that extended the real number 
system envisaged on the real line to the whole of the complex plane. 
Historically this took several centuries and continues to be problematic 
for many students, though it proves supportive for modern mathematics 
and applications in areas such as engineering. 

11. EMOTIONAL ASPECTS OF MATHEMATICS LEARNING 

Making sense of new mathematics is a challenge that blends together 
some aspects that are supportive and others that are problematic. A major 
aspect of our study of the spectrum of outcomes of mathematical learning 
relates to the accompanying emotional reactions.  

A learner may begin with the goal of making sense of a particular 
mathematical topic. Struggling with a problem that is resolved by a 
sudden insight can be accompanied by a deep sense of pleasure. A 
student accustomed to solving problems may persist when faced with a 
difficulty to seek once more the sweet taste of success. However, 
recurring difficulties can affect a learner’s attitude that may in the longer 
term develop into mathematical anxiety. 

When faced with lack of understanding and the fear of possible 
failure, students and their teachers may change their goal from 
conceptual understanding to that of learning procedures to pass 
examinations and to acquire techniques to use in applications. Procedural 
learning can be an alternative goal that gives pleasure in success. 
However, this success may be limited, enabling the student to solve 
routine problems but without further reflection to make sense of the 
relationships, it may lead to less flexible forms of mathematical thinking. 

As individuals take personal routes through their development of 
mathematical thinking, human emotions play a significant role in 
supporting or inhibiting progress. While supportive met-befores 
encourage generalizations that give pleasure and power, problematic 
met-befores cause conflict in new situations, acting as a challenge to some 
and a source of anxiety to others. 

This applies not just to learners but to all of us, including teachers, 
mathematicians, experts who build theories and, in particular, to readers of 
this book. The mathematical journey that we take in this text begins with 
young children and extends to the boundaries of mathematical research. 
It is evident that some topics will be unfamiliar to particular readers, be 
they teachers of young children with little or no experience of university 
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mathematics or research mathematicians unfamiliar with the cognitive 
development of young children. I have therefore graded the expectations 
of mathematical knowledge so that the initial chapters are readable for 
anyone familiar with school mathematics including geometry and 
algebra, with a gentle introduction to the very different formal world of 
definition and proof. Thereafter, as the mathematics becomes more 
sophisticated, I shall attend to its special characteristics appropriate at this 
level while giving a sense of the ideas for the more general reader. 

As the framework becomes more sophisticated, what matters is not 
the detail of the mathematics encountered at higher levels, for that 
requires specialist knowledge. Even mathematicians with an expertise in 
one area share ideas that are not understood by specialists in other areas. 
To formulate a broadly shared framework of the development of 
mathematical thinking requires an overall grasp of the general principles 
involved, evolving from human perception and action and developing 
sophisticated ideas through the use of language and symbolism, taking 
account of how we develop differently as individuals. This involves 
formulating how the ideas develop and why they present aspects that are 
supportive for some and problematic for others. 

Using the material in this book with mixed groups, I have found that 
some primary school teachers are clearly scared of algebra or of the 
calculus, but that they benefited from realizing how their conceptions 
depended on their met-befores, not on any innate stupidity. Talking about 
more advanced mathematics in a relaxed manner allowed them to 
become aware of the origins of their fears that in turn helped them 
empathize with the difficulties experienced by the children they teach. 

On the other hand, expert mathematicians who participated were 
often able to empathize with the detail of the cognitive development 
required to reach a sophisticated level of mathematical thinking. 

 Overall, the framework has helped individuals with different forms 
of expertise to have a clearer grasp of their roles within the whole 
development. In particular, it enabled participants to realize how 
mathematics has the potential to become simpler rather than more 
complicated, through building flexible connections between compressed 
concepts operating more fluently in new contexts. 

12. CRYSTALLINE CONCEPTS 

As I reflected on the increasing complication of mathematical thinking 
and my claim that true mathematical thinking should become not only 
more powerful but more simple, I realized that the whole edifice could be 
integrated using a single underlying idea. The thinkable concepts of 
mathematics are not just compressed at the whim of the thinker, to build 
creations of the human mind that are totally at the behest of their creator. 
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The material is not a malleable piece of metal that can be softened and 
beaten into any shape. It is tightly organized into a specific structure that 
is a consequence of the mathematics itself. 

A thinkable concept that has a necessary structure as a consequence of 
its context will be said to be crystalline. The term does not signify that the 
concept necessarily has the physical features of a crystal, such as faces of a 
particular symmetrical shape, but that it has strong bonds within it that 
cause it to have inevitable properties in its given context. 

This notion binds each of the developments in the three worlds of 
mathematics into a single overall framework. Each world builds from 
complicated situations, where phenomena may be imagined to have a 
combination of properties that are steadily linked together and seen to 
have necessary consequences that are implied by the context. In each 
world of mathematics, crystalline concepts emerge that have a network of 
related properties and, at its apex, mathematical thinking involves rich 
blends of formalism interrelated with embodiment and symbolism. 

Even though each world constructs sophisticated mental objects in 
different ways, the objects themselves—as platonic figures in geometry, 
numbers in arithmetic, and defined concepts in formal mathematics—all 
grow as structures that need to be recognized, described, defined and 
related through appropriate forms of proof. 

In the embodied world of Euclidean geometry, the phenomena are 
initially figures drawn on paper or sketched in sand. As their properties 
are observed and described, verbal definitions are used as a basis for 
constructing figures and proving theorems to develop the crystalline 
structures of Euclidean concepts. 

Actions beginning in the embodied world are transformed into 
operations in the symbolic world enshrined in the crystalline structures of 
an increasingly sophisticated range of procepts. 

In the world of axiomatic formal mathematics, a complex structure is 
seen as having properties that can be described, and then carefully 
defined as the basis of a formal theory whose crystalline structure is 
deduced by mathematical proof. In all three worlds we see a long-term 
structural abstraction in mathematical thinking through recognition, 
description, definition and deduction. 

We therefore see the whole development of mathematical thinking as 
a combination of compression and blending of knowledge structures to 
produce crystalline concepts that can lead to imaginative new ways of 
thinking mathematically in new contexts. 

This development varies enormously in different individuals 
depending on how they cope with the long-term evolution of ideas as 
supportive met-befores lead to generalization in new contexts and 
problematic met-befores inhibit progress. 
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13. A BRIEF OVERVIEW 

This opening chapter has outlined the major ideas that underpin a theory 
of how humans learn to think mathematically as they mature through 
three mental worlds of mathematics. In the following chapters, individual 
aspects will be considered in greater detail. 

Chapter two will consider the early learning of the young child 
constructing ideas of shape and arithmetic. 

Chapter three studies the general development of mathematical 
thinking in terms of set-befores and met-befores. 

Chapter four considers the roles of compression, connection and 
blending into crystalline concepts. 

Chapter five speaks of the emotions related to success and failure in 
mathematical thinking as the learner faces successive developments that 
may be powerful and pleasurable in some circumstances yet problematic 
in others. 

Chapter six introduces the three worlds of mathematics in detail to see 
how the growing child in today’s society is taught to develop 
mathematical thinking, blending together embodiment and symbolism 
before some go on to encounter the fundamental change in thinking 
required to shift to the axiomatic formal world of mathematics. 

Chapter seven considers the subtle relationships between 
embodiment and symbolism as embodied compression focusing on the 
effect of operations on visible objects gives more general insight into their 
properties than operational compression that focuses on specific 
calculations. It transpires that embodiment provides human meaning in 
simple cases but specific embodiments may have problematic aspects that 
impede generalization. This leads to a discussion of the complementary 
nature of embodiment and symbolism in longer-term learning. 

Chapter eight studies how knowledge structures may be used in 
problem solving at all levels and leads to a consideration of the long-term 
development of mathematical proof. 

Chapter nine turns to the historical development of mathematical 
thinking in the light of the framework of embodiment, symbolism and 
formalism, in particular to take a more detailed look at the historical 
development of formal proof. 

Chapter ten returns to individual development to consider the 
transition from school mathematics to formal mathematics at university, 
which may involve a ‘natural’ approach based on previous embodied and 
symbolic experiences, or a ‘formal’ route focused on making sense of the 
logical deductions in the theorems. Others, who find the ideas 
problematic may find it necessary to focus on the alternate goal of 
learning proofs procedurally to pass examinations. 

Chapter eleven considers the teaching and learning of calculus where 
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the formal limit concept often proves to be problematic. The three-world 
framework suggests that a natural approach blending embodied 
properties of graphs and related symbolism can provide a sound 
foundation, appropriate both for practical applications and also for later 
development in formal mathematical analysis. 

Chapter twelve studies how expertise in formal mathematics may 
lead to formal knowledge structures becoming conceived as rich 
crystalline concepts. Furthermore, certain theorems, called ‘structure 
theorems’, will be shown to prove properties that lead to more 
sophisticated forms of embodiment and symbolism. This integrates 
mathematical thinking at the highest level as an intimate blend of all three 
worlds of mathematics. Individual mathematicians may work in 
specialisms that privilege embodied thought experiment, operational 
calculations, formal proof, or a blend of different aspects. 

In chapter thirteen, the blend of three worlds is illustrated by 
considering the mathematics of the infinitely large and infinitely small. 
These ideas were seen as problematic at various stages in history. 
However, a structure theorem may be proved in the formal world that 
reveals a blend of visual magnification and operational symbolism that 
makes sense of long-standing conflicts 

Chapter fourteen considers the further expansion of mathematical 
thinking through research, blending natural embodiment, symbolic 
manipulation, and formal proof, as appropriate for the particular context. 

Chapter fifteen reflects on the overall framework and relates it to 
other theories of mathematical thinking. This reveals a long-term 
evolution of our understanding of how humans learn to think 
mathematically. It reveals a unified framework based on the sensori motor 
language of mathematics through blending conceptual embodiment, 
operational symbolism and axiomatic formalism to form crystalline 
concepts that are the essence of sophisticated mathematical thinking. 

It also reveals how supportive and problematic met-befores affect the 
emotional and cognitive development of individuals. This includes not 
only children in school and students at university learning mathematics, 
but all of us, including mathematicians at the frontiers of research and 
theoreticians like myself who develop theories of how humans learn to 
think mathematically. As we consider the theoretical frameworks 
available to us, we need to reflect deeply on how our own beliefs are 
subtly shaped by our own personal experiences. 

The book closes with an appendix tracing the evolution of this theory to 
reveal its origins in the insights of others to whom I am forever in debt. 
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