
INTRODUCTION TO TROPICAL ALGEBRAIC GEOMETRY

DIANE MACLAGAN

These notes are the lecture notes from my lectures on tropical geometry at the
ELGA 2011 school on Algebraic Geometry and Applications in Buenos Aires August
1-5 2011. Please send any typos to me at D.Maclagan@warwick.ac.uk. More details
can be found in the draft book Introduction to tropical algebraic geometry, with Bernd
Sturmfels, which is available at www.warwick.ac.uk/staff/D.Maclagan/papers/TropicalBook.pdf.
Comments and corrections about the draft are very welcome.

1. Lecture 1

Tropical algebraic geometry is algebraic geometry over the tropical semiring. It
replaces a variety by its combinatorial shadow.

Outline of the lectures:

(1) Introduction
(2) Fundamental theorem and structure theorem
(3) Computing tropical varieties
(4) Connections to toric varieties
(5) Enumerative geometry and other applications.

1.1. Tropical arithmetic.

Definition 1.1. The tropical semiring is R∪{∞}, with operation ⊕ and ⊗ given by
a⊕ b = min(a, b) and a⊗ b = a+ b. It is associative and distributative, with additive
identity ∞ and multiplicative identity 0. This satisfies every axiom of a ring except
additive inverses, so is a semiring.

Tropical mathematics has existed for much longer than tropical geometry, and has
seen use in semigroup theory and optimization. The name “tropical” was coined
by some French mathematicians in honour of the Brazilian computer scientists Imre
Simon.

Tropical operations are often simpler than regular operations. For example we
have the “Freshman’s dream”: (x + y)n = xn + yn.

Tropical polynomials are piecewise linear functions.

Example 1.2. (1) The tropical polynomial F (x) = −2⊗x3⊕−1⊗x2⊕1⊗x⊕5
is min(3x − 2, 2x − 1, x + 1, 5) in regular arithmetic. This is the piecewise
linear function whose graph is shown on the left in Figure 1.

(2) The tropical multivariate polynomial x⊕y⊕0 is the piecewise linear function
min(x, y, 0) in regular arithmetic. Note that the zero cannot be removed here,
as zero is not the additive identity. This is a function from R2 to R whose
domain is shown in Figure 2
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Figure 1. A tropical polynomial
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Figure 2. A tropical line

With no subtraction, it is not obvious how to solve polynomial equations. For
example, the equation x ⊕ 2 = 5 has no solution. This problem has the following
resolution.

Definition 1.3. The hypersurface V (F )) defined by the tropical polynomial F in
n variables is the nonlinear locus of F . This is the locus in Rn where F is not
differentiable, or equivalently the x ∈ Rn for which the minimum is achieved twice
in F (x)

Example 1.4. In the first example of Example 1.2 V (F ) = {0, 3, 4}. In the second
it is the union of the three rays shown on the right in Figure 2.

Example 1.5. The tropical quadratic formula is particularly simple. If F (x) =
a⊗x2⊕ b⊗x⊕ c, then the graph of F is shown in Figure 3. Note that there are two
cases, depending on the sign of the tropical discriminant a+c−2b. If 2b ≤ a+c then
V (F ) = {c− b, b−a}. If 2b ≥ a+ c then V (F ) = {(c−a)/2}. Compare this with the
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Figure 3. Tropical quadratic polynomials

usual quadratic formula, and the usual discriminant. Note also that it much easier
to solve higher degree polynomials!

Goal of first half of the week: Develop the theory of tropical varieties and
understand their structure and connection with “classical” varieties.

There are several approaches to tropical geometry. We will follow the “embedded
approach”, which focuses on tropicalizing classical varieties. There is also an ap-
proach which focuses on developing an abstract theory of tropical varieties in their
own right (see work of Mikhalkin and collaborators [Mik], [Mik06]). This is most
developed for curves, and connects best to classical varieties with additional niceness
conditions.

Tropical geometry has become a broad field, with connections to optimization,
integrable systems, mirror symmetry,

1.2. Connection with classical algebraic geometry. For a field K we set K∗ =
K \ {0}. Fix a valuation val : K∗ → R. This is a function satisfying:

(1) val(ab) = val(a) + val(b)
(2) val(a + b) ≥ min(val(a), val(b)).

Example 1.6. (1) K = C with the trivial valuation val(a) = 0 for all a ∈ C∗

(2) K = C{{t}}, the field of Puiseux series. This is ∪n≥1C((t1/n)). It is the
algebraic closure of the field of Laurent series. Elements are Laurent series
with rational exponents where in any given series the exponents all have a
common denominator. A valuation is given by taking a ∈ C{{t}} to the lowest
exponent appearing. For example, val(3t−1/2 + 8t2 + 7t13/3 + . . . ) = −1/2.

(3) K = Q or Qp with the p-adic valuation. If q = pna/b ∈ Q with p 6 |a, b then
valp(q) = n. For example, val2(8) = 3, and val3(5/6) = −1.

Definition 1.7. The tropicalization of a Laurent polynomial f =
∑

cux
u ∈ K[x±1

1 , . . . , x±1
n

is trop(f) : Rn → R given by

trop(f)(w) = min(val(cu) + w · u).
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Figure 4. A tropical quadric

This is obtained by regarding the addition and multiplication as tropical addition
and multiplication, and changing the coefficients to their valuations.

Example 1.8. Let K = Q with the 2-adic valuation, and let f = 6x2 +5xy +10y2 +
3x− y + 4 ∈ Q[x±1, y±1]. Then trop(f) = min(2x + 1, x + y, 2y + 1, x, y, 2). This is
illustrated in Figure 4.

For f ∈ K[x±1
1 , . . . , x±1

n the (classical) hypersurface V (f) equals {x ∈ (K∗)n :
f(x) = 0}. The tropicalization trop(V (f)) of V (f) is the tropical hypersurface of
trop(f). This is the nondifferentiability locus of trop(f), or equivalently

trop(V (f)) = {w ∈ Rn : the minimum in trop(f)(w) is achieved at least twice }.

Note that trop(xuf) = trop(xu) + trop(f), so trop(xuf)(w) = w · u + trop(f)(w),
and thus trop(V (xuf)) = trop(f). This explains why the naturatl place to consider
tropical varieties is (K∗)n, not An or Pn.

Let Y = V (I) be a subvariety of T = (K∗)n. If I = 〈f1, . . . , fr〉 then

Y = V (f1, . . . , fr) = {x ∈ T : f1(x) = · · · = fr(x) = 0}
= {x ∈ T : f(x) = 0 for all f ∈ I}

Definition 1.9. The tropicalication of a variety Y ⊆ T is

trop(Y ) =
⋂

f∈I(Y )

trop(V (f)).

Example 1.10. (1) Y = V (x+y+z+w, x+2y+5z+11w) ⊆ (C∗)4. Then trop(Y )
has the property that if x ∈ trop(Y ), then x + λ(1, 1, 1, 1) ∈ trop(Y ) for all
λ ∈ R. We can thus quotient by the span of (1, 1, 1, 1) and describe trop(Y )
in R4/R(1, 1, 1, 1) ∼= R3. This consists of four rays, being the images of the
positive coordinate directions (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1).

(2) Let Y = V (t3x3 +x2y +xy2 + t3y3 +x2 + t−1xy +y2 +x+y+ t3) ⊆ (C{{t}}∗)2.
Then trop(V (f)) is shown in Figure 5. This is a “tropical elliptic curve”.
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Figure 5.

Warning: If Y = V (f1, . . . , fr), trop(Y ) does not always equal ∩r
i=1 trop(V (fi)).

For example, in the first part of Example 1.10, the tropicalication of both generators
is the same set, which is larger than the tropical variety.

Definition 1.11. If Y = V (I), a set f1, . . . , fr ∈ I with

trop(Y ) =
r⋂

i=1

trop(V (fi))

is called a tropical basis for I. Finite tropical bases always exist, so trop(Y ) is a
piecewise linear object.

Guiding question: Which properties of Y or of compactifications of Y can be
deduced from trop(Y )?

2. Exercises

(1) Show that if val : K∗ → R is a valuation, and val(a) 6= val(b), then val(a+b) =
min(val(a), val(b)).

(2) Give formulas to solve the tropical cubic.
(3) Draw the tropical varieties trop(V (f)) for the following f ∈ C{{t}}[x±1, y±1].

(a) f = t3x + (t + 3t2 + 5t4)y + t−2;
(b) f = (t−1 + 1)x + (t2 − 3t3)y + 5t4;
(c) f = t3x2 + xy + ty2 + tx + y + 1;
(d) f = 4t4x2 + (3t + t3)xy + (5 + t)y2 + 7x + (−1 + t3)y + 4t;
(e) f = tx2 + 4xy − 7y2 + 8;
(f) f = t6x3 + x2y + xy2 + t6y3 + t3x2 + t−1xy + t3y2 + tx + ty + 1.

(4) Let f = ax + by + c, where a, b, c ∈ C{{t}}. What are the possibilities for
trop(V (f))? How does this change if C{{t}} is changed to Q with the p-adic
valuation? Such tropical varieties are called tropical lines. (Harder) Repeat
this question for f = ax2 + bxy + cy2 + dx + ey + f (tropical quadrics).
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(5) Show that any two general tropical lines in R2 intersect in a unique point,
and there is a unique tropical line containing any two general points in R2.
What are the notions of genericity here?

(6) (Much harder) Show that if f and g are two general polynomials in K[x±1, y±1]
of degrees d and e respectively then trop(V (f)) ∩ trop(V (g)) consists of at
most de points. This can be refined by adding multiplicities to make the
intersection consist of exactly de points counted with multiplicity (and more
generally to n general polynomials in n variables). This is the tropical Bézout
theorem.

3. Lecture 2

‘
In the previous lecture we defined the tropical variety corresponding to an ideal I ⊂

K[x±1
1 , . . . , x±1

n ] to be the set of all points in Rn that are in the tropical hypersurfaces
trop(V (f)) for all f ∈ I, so are the common “tropical zeros” of the tropicalizations of
the polynomials f . The connection between the tropicalization trop(Y ) of a variety
Y = V (I) ⊆ (K∗)n and the original variety Y is closer than this analogy might
suggest, as the following theorem shows.

Theorem 3.1 (Fundamental theorem of tropical algebraic geometry). Let K be an
algebraically closed field with a nontrivial valuation val : K∗ → R, and let Y be a
subvariety of (K∗)n. Then

trop(Y ) = cl(val(Y ))

= cl((val(y1), . . . , val(yn)) : y = (y1, . . . , yn) ∈ Y ),

where the closure is in the usual Euclidean topology on Rn.

Example 3.2. Let Y = V (x + y + 1) ⊆ (K∗)2, where K = C{{t}}. Then Y =
{(a,−1− a) : a ∈ k∗ \ {−1}}. Note that

(val(a), val(−1− a)) =


(val(a), 0) : val(a) > 0

(val(a), val(a)) : val(a) < 0

(0, val(b)) : a = −1 + b, val(b) > 0

(0, 0) : otherwise

Note that, as predicted by Theorem 3.1, the union of these sets is precisely trop(Y ).
This is illustrated in Figure 6

Example 3.3. Let f = 4x2 + xy− 4y2 + x− y + 4 ∈ Q[x, y], where Q has the 2-adic
valuation. Then trop(V (f)) is shown in Figure 7. Note that the point (2, 2) ∈ V (f),
and (val(2), val(2)) = (1, 1) ∈ trop(V (f)).

The hard part of Theorem 3.1 is to show that if w ∈ trop(Y ) ∩ (im val)n then
there is y ∈ Y with val(y) = w. Showing that all val(y) for y ∈ Y live in trop(Y ) is
comparatively easy.

The slogan form of Theorem 3.1 is then:
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(val(a), 0)

(val(a), val(a))
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Figure 6. The Fundamental Theorem applied to a tropical line

(1, 1) = (val(2), val(2))

(2, 2)

(0, 0)

(0,−2)

(−2, 0)

Figure 7. An example of the Fundamental Theorem

Tropical varieties are combinatorial shadows of classical varieties.

The word “combinatorial” is justified by the Structure Theorem for tropical va-
rieties, which gives combinatorial contraints on which sets can be tropical varieties.
We first recall some definitions.

Definition 3.4. A variety Y ⊆ (K∗)n is irreducible if we cannot write Y = Y1 ∪ Y2

for Y1, Y2 ( Y subvarieties of Y .

Note that by Theorem 3.1 we have trop(Y1 ∪ Y2) = trop(Y1) ∪ trop(Y2).

Definition 3.5. A polyhedron in Rn is the intersection of finitely many half-spaces
in Rn. This can be written as:

P = {x ∈ Rn : Ax ≤ b},

where A is a d× n matrix, and b ∈ Rd. The dimension of P is the dimension of the
subspace ker(A). For a subgroup Γ ⊆ R, we say that a polyhedron P is Γ-rational if
A has rational entries, and b ∈ Γd. When Γ = Q, we say that polyhedron is rational.

If b = 0, then P is called a cone. In that case there are v1, . . . ,vs for which
P = pos(v1, . . . ,vs) := {

∑s
i=1 λivi : λi ≥ 0}.

A face of a polyhedron P determined by w ∈ (Rn)∗ is the set

facew(P ) = {x ∈ P : w · x ≤ w · y for all y ∈ P}.
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Figure 8. The complex on the left is pure, while the one on the r
ight is not.

Example 3.6. Let P be the square with vertices {(0, 0), (1, 0), (0, 1), (1, 1)}. This
has the description

P =

x ∈ R2 :


1 0
0 1

−1 0
0 −1

 x ≤


1
1
0
0


 .

Then we have

(1) face(1,0)(P ) is the edge of the square with vertices {(0, 0), (0, 1)},
(2) face(1,1)(P ) is the vertex (0, 0), and
(3) face(0,0)(P ) is P .

Definition 3.7. A polyhedral complex Σ is a finite union of polyhedra for which
any nonempty intersection of two polyhedra σ1, σ2 ∈ Σ is a face of each. If every
polyhedron in Σ is a cone, then Σ is called a fan. The support of Σ is the set

|Σ| = {x ∈ Rn : x ∈ σ for some σ ∈ Σ}.
Definition 3.8. A polyhedral complex is pure if the dimension of every maximal
polyhedron is the same. See Figure 8.

Definition 3.9. The lineality space L of a polyhedral complex Σ is the largest
subspace of Rn for which x + l ∈ Σ for all x ∈ Σ, l ∈ L.

Definition 3.10. A weighted polyhedral complex is a polyhedral complex Σ with a
weight wσ ∈ N for all maximal-dimensional σ ∈ Σ.

Let Σ be a weighted im val-rational polyhedral complex that is pure of dimension
d. The complex Σ is balanced if the following “zero-tension” conditions hold.

(1) If Σ is a one-dimensional rational fan, let u1, . . . ,us be the first lattice points
on the rays of Σ, and let wi be the weight of the cone containing the lattice
point ui. Then Σ is balanced if

∑s
i=1 wiui = 0.

(2) For other Σ, fix a (d−1)-dimensional polyhedron τ of Σ. Let L = span(x−y :
x, y ∈ τ) be the affine span of τ . Let starΣ(τ) be the rational polyhedral
fan whose support is {w ∈ Rn : there exists ε > 0 for which w′ + εw ∈
Σ for all w′ ∈ τ} + L. This has one cone for each polyhedron σ ∈ Σ that
contains τ , and has lineality space L. The quotient starΣ(τ)/L is a one
dimensional fan. We say that Σ is balanced at τ if the one-dimensional fan
starΣ(τ)/L is balanced. The polyhedral complex Σ is balanced if Σ is balanced
at all (d− 1)-dimensional cones.
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Connected in codimension one Not connected in codimension one

Figure 9.

Example 3.11. Let f = x2y2 + x3 + y3 + 1 ∈ C[x±1, y±1]. Then trop(V (f)) is
a one-dimensional fan with four rays: pos((1, 0)), pos((0, 1)), pos((−2,−1)), and
pos((−1,−2)), with weights 3, 3, 1 and 1. This is balanced as 3(1, 0) + 3(0, 1) +
1(−2,−1) + 1(−1− 2) = (0, 0).

Definition 3.12. A pure polyhedral complex is connected through codimension-
one if the graph with a vertex for each maximal polyhedra σ ∈ Σ and an edge
between two vertices if the corresponding polyhedra intersect in a codimension-one
face. For example, the polyhedral complex on the left of Figure 9 is connected
through codimension-one, while the one on the right is not.

Theorem 3.13. Let Y be a d-dimensional irreducible subvariety of (K∗)n. Then
trop(Y ) is the support of a pure d-dimensional weighted balanced (im val)-rational
polyhedral complex that is connected through codimension-one.

This means that tropical varieties have a discrete structure, and record information
about the original variety (such as its dimension). We will later see some other
features that retained by a tropical variety.

4. Exercises

(1) Show that if K is an algebraically closed field with a nontrivial valuations
val : K∗ → R (ie there is a ∈ K∗ with val(a) 6= 0) then im val is dense in R.

(2) Verify the fundamental theorem of tropical algebraic geometry and the struc-
ture theorem for Y = V (f) for the following polynomials f ∈ C{{t}}[x±1, y±1]:
(a) f = 3x + t2y + 2t;
(b) f = tx2 + xy + ty2 + x + y + t;
(c) f = x3 + y3 + 1.

(3) (Harder, but not impossible) Prove the easy direction of the fundamental
theorem.

(4) Let Y = trop(V (x+ y + z +1)) ⊆ (C∗)3. Compute trop(Y ), and a polyhedral
complex Σ with support trop(Y ). Show that Σ is balanced if we put the
weight one on each top-dimensional cone.

(5) Let Σ be the pure one-dimensional polyhedral fan with cones pos((1, 0)),
pos((0, 1)), pos((−1, 1)), pos((−1,−1)). Find all weights w ∈ N4 for which Σ
is balanced.
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5. Lecture 3

An important aspect of tropical varieties, which we now discuss, is that they can
actually be computed in practice. This uses an extension of the theory of Gröbner
bases to fields with a valuation.

Fix a splitting im val → K∗ of the valuation. This is a group homomorphism
u 7→ tu with val(tu) = u. For example, when K = C with the trivial valuation
(val(a) = 0 for all a 6= 0), then we can choose the splitting 0 7→ 1. When K = C{{t}},
we can choose u 7→ tu, and when K = Q with the p-adic valuation, we can choose
u 7→ pu.

Let R = {a ∈ K : val(a) ≥ 0} be the valuation ring of K. The ring R is local,
with maximal ideal m = {a ∈ K : val(a) > 0} ∪ {0}. The quotient k = R/m is the
residue field.

Example 5.1. (1) When K = C has the trivial valuation, we have R = C, and
m = 0, so k = C.

(2) When K = C{{t}}, R =
⋃

C[[t1/n]], and k = C.
(3) When K = Qp, R = Zp, and k = Z/pZ.

Given a polynomial f =
∑

cux
u ∈ K[x±1

1 , . . . , x±1
n ], and w ∈ (im val)n, the initial

form is
inw(f) =

∑
val(cu)+w·u=trop(f)(w)

t− val(cu)cux
u ∈ k[x±1

1 , . . . , x±1
n ],

where for a ∈ R we denote by a the image of a in k.

Example 5.2. Let K = Q with the 2-adic valuation, and let f = 2x2 + xy + 6y2 +
5x−3y+4. Then for w = (2, 2) we have trop(f)(w) = 2, so inw(f) = 5x+−3y+2−2 =
x + y + 1 ∈ Z/2Z[x±1, y±1].

For w = (−2,−1) we have trop(f)(w) = −3, so inw(f) = x2 + xy.

Given an ideal I ⊂ K[x±1
1 , . . . , x±1

n ] and w ∈ (im val)nq, the initial ideal of I is

inw(I) = 〈inw(f) : f ∈ I〉.
As for usual Gröbner bases, the initial ideal need not be generated by the initial
forms of a generating set for I, but there are always finite generating sets for which
this is the case. These finite sets (Gröbner bases) can be computed using a variant
of the standard Gröbner basis algorithm.

Proposition 5.3. Let Y = V (I) ⊆ (K∗)n and let w ∈ (im val)n. Then w ∈ trop(Y )
if and only if inw(I) 6= 〈1〉 ⊆ k[x±1

1 , . . . , x±1
n ].

Example 5.4. Let I = 〈2x2 + xy + 6y2 + 5x − 3y + 4〉 ∈ Q[x±1, y±1], where Q has
the 2-adic valuation. The claim of Proposition 5.3 is illustrated in Figure 10.

There is a polyhedral complex Σ with inw(I) constant for w ∈ relint(σ) for any
σ ∈ Σ. This is called the Gröbner complex of I. Proposition 5.3 implies that trop(Y )
is the union of the polyhedra σ in the Gröbner complex of I(Y ) for which inw(I) 6= 〈1〉
for any w ∈ relint(σ).

The software gfan [Jen] by Anders Jensen computes tropical varieties by exploiting
this Gröbner description.
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〈y〉 = 〈1〉

〈x + y + 1〉
〈1〉

〈xy〉 = 〈1〉

〈x + xy〉 = 〈1 + y〉

Figure 10. The Gröbner complex of Example 5.4

Recall that trop(Y ) is the support of a balanced weighted polyhedral complex Σ.
We assume, as described above, that inw(I(Y )) is constant on the relative interior of
cones of Σ.

The weights wσ ∈ N on maximal polyhedra in Σ balanced are defined as follows.
Fix w ∈ (im val)n in the relative interior of a maximal polyhedron of Σ. Then
V (inw(I)) ⊆ (k∗)n is a union of (k∗)d-orbits. We set wσ to be the number of such
orbits (counted with multiplicity).

Hidden in the proof of the Structure Theorem (Theorem 3.13) is the fact that this
choice makes the polyhedral complex Σ balanced.

Example 5.5. Let f = x2+3x+2+x2y+2xy2−2y2 ⊆ C[x±1, y±1]. Then trop(V (f))
is a one-dimensional fan with five rays, spanned by the vectors {(1, 0), (0, 1), (−1, 0), (−1,−1), (0,−1)}.
When w = (0, 1), trop(f)(w) = 0, so inw(f) = x2 + 3x + 2 = (x + 2)(x + 1).
thus V (inw(f)) = {(−2, a) : a ∈ C∗} ∪ {(−1, a) : a ∈ C∗}, so the weight on
the cone spanned by (0, 1) is 2. When w = (−1,−1), inw(f) = x2y + 2xy2, so
V (inw(f)) = V (x + 2y) = {(2a,−a) : a ∈ C∗}, and thus the weight on this cone is
one. Similarly, the cones on the cone spanned by (1, 0) is two, and all other weights
are one. Note that

2

(
1
0

)
+ 2

(
0
1

)
+ 1

(
−1

0

)
+ 1

(
−1
−1

)
+ 1

(
0

10

)
.

This is illustrated in Figure 11.

Drawing curves in the plane
Let C = V (f) ⊆ (K∗)2 for f ∈ K[x±1, y±1]. We’ve seen that trop(C) is a weighted

balanced one-dimensional polyhedral complex. We now discuss how to draw trop(C).
Case one: The valuation on K is trivial (val(a) = 0 for all a 6= 0). Let f =

∑
cux

u,
and let P be the Newton polytope of f . This is the convex hull of the u ∈ Z2 with
cu 6= 0: P = {

∑
λuu : cu 6= 0,

∑
λu = 1}. The normal fan to P is the fan N(P ) with

cones C[w] = cl(w′ : face′w(P ) = facew(P )).

Example 5.6. Let f = x2y + 5y2 − 3x + 2. Then P and N(P ) are illustrated in
Figure 12.



12 DIANE MACLAGAN

3

3

Figure 11.

Figure 12.

In this case trop(C) is the union of all one-dimensional cones in the normal fan
N(P ). For a one-dimensional cone σ ∈ trop(C), the weight wσ is the lattice length
of the edge of P with normal vector in σ. The lattice length is the number of lattice
points (elements of Z2) in the edge minus one.

Case 2 K has a nontrivial valuation. Let P̃ be the convex hull of the set
{(u, val(cu)) : cu 6= 0} in R2+1 = R3, and let N(P̃ ) be its normal fan. The regu-
lar subdivision ∆(val(cu)) of P corresponding to the vector (val(cu)) is the projection

of P to the “lower faces” of P̃ .

Example 5.7. Let f = 2x2 + xy − 6y2 + 5x − 3y + 2 ∈ Q[x±1, y±1] where Q has
the 2-adic valuation. Then the regular subdivision of the Newton polytope of f
corresponding to val(cu) is shown in Figure 13

Figure 13. The regular subdivision induced by (val(cu))
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In this case trop(C) = {w ∈ R2 : face(w,1)(P̃ ) is not a vertex }. This is the dual
graph to ∆(val(cu)).

Example 5.8. Let f = 27x3+6x2y+12xy2+81y2+3x2+5xy+3y2+3x+2y+243 ∈
Q[x±1, y±1] where Q has the 3-adic valuation.

Then the regular triangulation corresponding to (val(cu)) is shown in Figure 14,
along with the tropical variety.

Figure 14.

6. Exercises

(1) Show that the residue field of C{{t}} is C. Show that the residue field of Q
with the p-adic valuation is Z/pZ.

(2) Show that if K is an algebraically closed field with a valuation, then the
residue field is algebraic closed.

(3) Let f = 8x2 + xy + 12y2 + 3 ∈ Q[x±1, y±1]. Compute all initial ideals inw(I)
of I = 〈f〉 as w varies when
(a) Q has the trivial valuation,
(b) Q has the 2-adic valuation, and
(c) Q has the 3-adic valuation.

(4) Show that if K has the trivial valuation, then the Gröbner complex is a fan,
so every polyhedron is a cone.

(5) Go back to the plane curves of the first exercise set and draw them using the
regular triangulation method.

7. Lecture 4

In this lecture we cover some of the connections between tropical geometry and
toric varieties. We assume here that K = C. This means that for Y ∈ (C∗)n, trop(Y )
is the support of a weighted balanced rational polyhedral fan.

Definition 7.1. A (normal) toric variety is a normal variety X containing a dense
copy of T = (C∗)n with an action of T on X that extends the action of T on itself.

Examples include:

(1) X = (C∗)n

(2) X = An ⊂ (C∗)n = {x ∈ An : xi 6= 0 for 1 ≤ i ≤ n}.
(3) X = Pn ⊂ (C∗)n = {x ∈ Pn : xi 6= 0 for 0 ≤ i ≤ n}.
(4) X = P1 × P1
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A toric variety X is a union of T -orbits. These can be recorded using a polyhedral
fan Σ.

Example 7.2. The projective plane P2 decomposes into the following T = (C∗)2-
orbits:

(C∗)2 ∪ {[0 : a : b] : a, b ∈ C∗} ∪ {[a : 0 : b] : a, b ∈ C∗} ∪ {[a : b : 0] : a, b ∈ C∗}
∪{[1 : 0 : 0]} ∪ {[0 : 1 : 0]} ∪ {0 : 0 : 1]}.

The corresponding fan is shown in Figure 15.

Figure 15. The fan of P2

Alternatively (and more standardly), given a rational polyhedral fan Σ we con-
struct a toric variety XΣ by gluing together torus orbits. Each cone of Σ determines
an affine toric variety, and the fan tells us how to glue them together. For exam-
ple, for P2 the fan tells us to construct P2 by gluing together the three affine charts
{x ∈ P2 : xi 6= 0} for 0 ≤ i ≤ 2.

For more background on toric varieties, some good references include [Ful93] and
the new book [CLS11].

The connection to tropical geometry begins with the following question.

Question 7.3. Given a toric variety XΣ, and a subvariety Y ⊆ XΣ, which T -orbits
of XΣ does Y intersect?

The answer surprisingly uses tropical geometry. The subvariety Y intersects the
torus orbit indexed by σ ∈ Σ if and only if trop(Y ∩ T ) intersets relint(σ). This
follows from work of Tevelev [Tev07].

Example 7.4. Let Y = V (x + y + z) ⊆ P2. Then Y ∩ T ) = trop(x + y + 1), which
is the standard tropical line. This intersects every one of the fan of P2 except for the
top-dimensional ones. Indeed, the top-dimensional cones correspond to the T -fixed
points [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1], which do not lie in Y , while every other
T -orbit does contain a point of Y .

Question 7.5. Given a subvariety Y ⊆ T , how can we find a good compactification
of Y ?

Example 7.6. Let A = {H1, . . . , Hs} be a hyperplane arrangement in Pn, where
Hi = {x ∈ Pn : ai · x = 0}, where ai ∈ Cn+1. Let Y = Pn \A. This can be embedded
into (C∗)s+1 by sending y ∈ Y to [a1 · y : · · · : as · y]. Then Y = V (

∑n
i=1 bijxj :

1 ≤ i ≤ s − n − 1}, where B is a (s − n − 1) × (n + 1) matrix of rank s − n − 1
with ABT = 0, where A is the matrix with columns the vectors ai. One choice of
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compactification of Y is the original Pn; another is the DeConcini/Procesi wonderful
compactification.

Definition 7.7. Fix Y ⊂ T , and choose a fan Σ with support trop(Σ). The closure
Y = cl(Y ⊂ XΣ) is a tropical compactification of Y .

Tropical compactifications have nice properties:

(1) Y is proper.
(2) Y intersects a codimension-k T -orbit of XΣ in codimension k.

If the fan Σ is chosen to be sufficiently refined then we get further niceness proper-
ties. One way to guarantee “sufficiently refined” is choose a fan Σ so that inw(I(Y ))
is constant for all w ∈ relint σ for all σ ∈ Σ. By further refining Σ we can also assume
that the toric variety XΣ is smooth. In this case we have:

(1) The multiplicity wσ on a maximal cone σ of Σ equals the intersection number
[Y ] · [V (σ)], where V (σ) is the closure of the T -orbit corresponding to σ.

(2) (with some additional niceness conditions) For any σ ∈ Σ, the intersection of
Y with Oσ is V (inw(I(Y )))/(C∗)dim σ for any w ∈ relint(σ).

Example 7.8. When Y = Pn \A, trop(Y ) ⊆ Rs−1 has a coarsest fan structure. The
tropical compactification Y coming from this is the DeConcini-Procesi wonderful
compactification for most choices of A.

A motivating example of this is given by the moduli space M0,n.
The moduli space M0,n parameterizes smooth genus zero curves with n distinct

marked point. It thus parameterizes ways to arrange n distinct point on P1 up to
Aut(P1). For example, M0,3 is a point, as there is an automorphim of P1 that takes
any three distinct points to 0, 1,∞. When n = 4, M0,4 = P1 \ {0, 1,∞}. In general,

M0,n = (P1 \ {0, 1,∞})n−3 \ diagonals

= (C∗ \ {1})n−3 \ diagonals

= Pn−3 \ {x0 = 0, xi = 0, xi = x0, xi = xj : 1 ≤ i < j ≤ n}.

We thus have M0,n as the complement of
(

n−1
2

)
=

(
n
2

)
−n+1 hyperplanes. This means

the moduli space M0,n can be be embedded into (C∗)(
n
2)−n as a closed subvariety.

The tropical variety trop(M0,n) is an (n− 3)-dimensional fan ∆ in R(n
2)−n. The toric

variety X∆ is smooth (but not complete).
The fan ∆ is the space of phylogenetic trees. Maximal cones are labelled by

trivalent trees with n labelled leaves. A point in the cone records the length of the
internal edges in the tree.

A picture of ∆ when n = 5 is shown in Figure 16. This is a two-dimensional fan
in R5, so its intersection with the four-dimensional sphere in R5 is a graph, which is
drawn in Figure 16.

The closure of M0,n in X∆ is the moduli space M0,n of stable genus zero curves
with n marked points. This parameterizes trees of P1s with n marked points and at
least three special points (nodes or marked points) on each component.
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Figure 17. A stable curve with 7 marked points

For σ ∈ ∆, the intersection of M0,n with the torus orbit corresponding to σ is
the stratum of all curves with dual graph the corresponding tree. In particular, the
intersection of M0,n with a torus-invariant divisor on X∆ is a boundary divisor.

The moduli space M0,n and the toric variety X∆ are closely related. Their Picard
groups are isomorphic, and the inclusion i : M0,n → X∆ introduces an isomorphism
i∗ : A∗(X∆) → A∗(M0,n).

8. Lecture 5
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