MATH 216B HOMEWORK 2

SPRING 2004
(1) Recall that the stellar subdivision of a cone $\sigma=\operatorname{pos}\left(v_{1}, \ldots, v_{k}\right)$ with respect to a vector $v \in \sigma$ has rays $\left\{v_{1}, \ldots, v_{k}, v\right\}$, and cones $\operatorname{pos}\left(v, v_{i}: v_{i} \in \tau^{\prime}\right)$, where τ^{\prime} is a face of σ not containing v. Show that this actually is a subdivsion, so these cones fit together to form a fan that covers σ.
(2) Fix $a \in \mathbb{N}, a>0$, and let $A=\mathbb{C}\left[t, y t, x y t, x t, x^{2} t, \ldots, x^{a+1} t\right]$, with $\operatorname{deg}(x)=\operatorname{deg}(y)=0$, and $\operatorname{deg}(t)=1$. Show that $\operatorname{Proj}(A)$ is the Hirzebruch surface \mathbb{F}_{a} (whose fans has rays $\{(1,0),(0,1),(-1, a),(0,-1)\}$ and the four two-dimensional cones forced by these rays).
(3) Describe the fan for the weighted projective space $\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$ (we did the case $a_{0}=1$ in class) (Hint: See Fulton).
(4) Find a resolution of singularities for $\mathbb{P}(1,2,3,4)$.
(5) Prove that every complete smooth toric surface is a blow-up of \mathbb{F}_{a} or \mathbb{P}^{2}. You may want to follow the following outline (and see the hints in Fulton):
(a) Let the rays of Δ be $v_{0}, \ldots, v_{d-1}, v_{d}=v_{0}$ in counterclockwise order. Show that $v_{i+1}+v_{i-1}=a_{i} v_{i}$ for some $a_{i} \in \mathbb{N}$.
(b) We want to prove that if $d \geq 5$, there is an i such that v_{i-1} and v_{i} generate a strongly convex polyhedral cone, and $a_{i}=1$ (explain why!).
(c) Show that if $d \geq 4$ there must be two opposite vectors in the sequence (ie $v_{i}=-v_{j}$).
(d) If $v_{i}=-v_{0}$, and $i \geq 3$, show that $v_{j}=v_{j-1}+v_{j}$ for some $0<j<i$.

