MATH 216B HOMEWORK 2

SPRING 2004

- (1) Recall that the stellar subdivision of a cone $\sigma = \text{pos}(v_1, \ldots, v_k)$ with respect to a vector $v \in \sigma$ has rays $\{v_1, \ldots, v_k, v\}$, and cones $\text{pos}(v, v_i : v_i \in \tau')$, where τ' is a face of σ not containing v. Show that this actually is a subdivision, so these cones fit together to form a fan that covers σ .
- (2) Fix $a \in \mathbb{N}$, a > 0, and let $A = \mathbb{C}[t, yt, xyt, xt, x^2t, \dots, x^{a+1}t]$, with $\deg(x) = \deg(y) = 0$, and $\deg(t) = 1$. Show that $\operatorname{Proj}(A)$ is the Hirzebruch surface \mathbb{F}_a (whose fans has rays $\{(1,0), (0,1), (-1,a), (0,-1)\}$ and the four two-dimensional cones forced by these rays).
- (3) Describe the fan for the weighted projective space $\mathbb{P}(a_0, \ldots, a_n)$ (we did the case $a_0 = 1$ in class) (Hint: See Fulton).
- (4) Find a resolution of singularities for $\mathbb{P}(1, 2, 3, 4)$.
- (5) Prove that every complete smooth toric surface is a blow-up of \mathbb{F}_a or \mathbb{P}^2 . You may want to follow the following outline (and see the hints in Fulton):
 - (a) Let the rays of Δ be $v_0, \ldots, v_{d-1}, v_d = v_0$ in counterclockwise order. Show that $v_{i+1} + v_{i-1} = a_i v_i$ for some $a_i \in \mathbb{N}$.
 - (b) We want to prove that if $d \ge 5$, there is an *i* such that v_{i-1} and v_i generate a strongly convex polyhedral cone, and $a_i = 1$ (explain why!).
 - (c) Show that if $d \ge 4$ there must be two opposite vectors in the sequence (ie $v_i = -v_j$).
 - (d) If $v_i = -v_0$, and $i \ge 3$, show that $v_j = v_{j-1} + v_j$ for some 0 < j < i.