MATH 216B HOMEWORK 1

SPRING 2004

(1) Show that every face τ of a polyhedral cone σ is a face of some facet. Conclude that every face is contained in some chain $\tau_{0} \subsetneq$ $\tau_{1} \subsetneq \cdots \subsetneq \tau \subsetneq \cdots \subsetneq \tau_{k}=\sigma$.
(2) Show that if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\} \subseteq \mathbb{Z}^{n}$ generate $\operatorname{span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right) \cap \mathbb{Z}^{n}$ as an additive group, then there is $M \in S L(n, \mathbb{Z})$ such that $M \mathbf{u}_{i}=\mathbf{e}_{i}$, where \mathbf{e}_{i} is the standard basis vector.
(3) Let $\sigma=\operatorname{pos}((0,1),(4,-1))$. Write $\mathbb{C}\left[S_{\sigma}\right]$ as R / I, where R is a polynomial ring and I is an ideal.
(4) Repeat the previous question for

$$
\sigma=\operatorname{pos}((-6,1,1),(1,-1,0),(1,0,-1),(-2,-1,3),(-3,1,0))
$$

You will (probably) need to use software to compute this. (Warning: I haven't told you how to do the last step yet with software).
(5) Recall that $I_{\sigma}=\operatorname{ker}\left(\phi: \mathbb{C}\left[x_{1}, \ldots, x_{k}\right] \rightarrow \mathbb{C}\left[S_{\sigma}\right]=\mathbb{C}\left[t^{u_{1}}, \ldots, t^{u_{k}}\right]\right.$. Show that $I_{\sigma}=\left\langle x^{u}-x^{v}: \phi\left(x^{u}\right)=\phi\left(x^{v}\right)\right.$.
(6) Show that $V\left(I_{\sigma}\right) \cap\left(\mathbb{C}^{*}\right)^{k}$ is isomorphic to $\left(\mathbb{C}^{*}\right)^{n}$.
(7) List (with justification) the orbits of the torus action for the example of Question 2, thought of as a subvariety of \mathbb{C}^{5}. (Note the hint for Question 2 embedded in this question!)
(8) Prove that for the polytope $\operatorname{conv}\left(0, \mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right) \subseteq \mathbb{R}^{n}$ we have $X_{P}=\mathbb{P}^{n}$.

