MATH 216B HOMEWORK 1

SPRING 2004

- (1) Show that every face τ of a polyhedral cone σ is a face of some facet. Conclude that every face is contained in some chain τ₀ ⊊ τ₁ ⊊ ··· ⊊ τ ⊊ ··· ⊊ τ_k = σ.
 (2) Show that if {**u**₁,..., **u**_k} ⊆ Zⁿ generate span(**u**₁,..., **u**_k) ∩ Zⁿ
- (2) Show that if $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\} \subseteq \mathbb{Z}^n$ generate span $(\mathbf{u}_1, \ldots, \mathbf{u}_k) \cap \mathbb{Z}^n$ as an additive group, then there is $M \in SL(n, \mathbb{Z})$ such that $M\mathbf{u}_i = \mathbf{e}_i$, where \mathbf{e}_i is the standard basis vector.
- (3) Let $\sigma = \text{pos}((0, 1), (4, -1))$. Write $\mathbb{C}[S_{\sigma}]$ as R/I, where R is a polynomial ring and I is an ideal.
- (4) Repeat the previous question for
- $\sigma = pos((-6, 1, 1), (1, -1, 0), (1, 0, -1), (-2, -1, 3), (-3, 1, 0)).$

You will (probably) need to use software to compute this. (Warning: I haven't told you how to do the last step yet with software).

- (5) Recall that $I_{\sigma} = \ker(\phi : \mathbb{C}[x_1, \dots, x_k] \to \mathbb{C}[S_{\sigma}] = \mathbb{C}[t^{u_1}, \dots, t^{u_k}].$ Show that $I_{\sigma} = \langle x^u - x^v : \phi(x^u) = \phi(x^v).$
- (6) Show that $V(I_{\sigma}) \cap (\mathbb{C}^*)^k$ is isomorphic to $(\mathbb{C}^*)^n$.
- (7) List (with justification) the orbits of the torus action for the example of Question 2, thought of as a subvariety of \mathbb{C}^5 . (Note the hint for Question 2 embedded in this question!)
- (8) Prove that for the polytope $\operatorname{conv}(0, \mathbf{e}_1, \dots, \mathbf{e}_n) \subseteq \mathbb{R}^n$ we have $X_P = \mathbb{P}^n$.