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(1) Let the limit of the convergent sequence xn be x. Since xn converges to x, given ε > 0
we can find N such that if n ≥ N , |xn−x| < ε/2. Since An = sup{xn, xn+1, xn+2, . . . },
we can find m(n) ≥ n such that 0 ≤ An − xm(n) < ε/2. Thus for n ≥ N , |An − x| ≤
|An − xm(n)| + |xm(n) − x| < ε/2 + ε/2 = ε, and so An converges to x. Similarly,
we can find m′(n) ≥ n such that 0 ≤ xm′(n) − Bn < ε/2, so for n ≥ N , |Bn − x| ≤
|Bn − xm′(n)|+ |xm′(n) − x| < ε, so Bn converges to x.

(2) We first show that bd(A ∪ B) ⊆ bd(A) ∪ bd(B). Let x ∈ bd(A ∪ B). Then for every
ε > 0 the ball D(x, ε) contains a point in A ∪B and a point in M \ (A ∪B). Suppose
there is some ε′ for which D(x, ε′) contains no points of A. Then for every ε ≤ ε′, and
thus for every ε > 0, D(x, ε) contains a point of B and a point of M \B ⊇M \ (A∪B),
so x ∈ bd(B). Otherwise for every ε > 0 the ball D(x, ε) contains a point of A and a
point of M \A ⊇M \(A∪B), and thus x ∈ bd(B). So in either case x ∈ bd(A)∪bd(B).

We now show that bd(A)∪ bd(B) ⊆ bd(A∪B)∪A∪B. Let x ∈ bd(A)∪ bd(B). If
x ∈ A or x ∈ B then x ∈ bd(A∪B)∪A∪B, so we may assume that x ∈M \ (A∪B).
Let ε > 0 be given. If x ∈ bd(A) then D(x, ε) contains a point of A, while if x ∈ bd(B)
then D(x, ε) contains a point of B. Thus for all ε > 0 the ball D(x, ε) contains
a point of A ∪ B, and a point (x!) of M ⊆ (A ∪ B), so x ∈ bd(A ∪ B). Thus
bd(A) ∪ bd(B) ⊆ bd(A ∪B) ∪A ∪B.

To show that both inclusions can be proper, consider A = [0, 2], and B = [1, 3].
Then bd(A∪B) = {0, 3} ( bd(A)∪ bd(B) = {0, 1, 2, 3} ( bd(A∪B)∪A∪B = [0, 3].

(3) (a) Let xk be a Cauchy sequence in M . To show that M is complete we need to show
that xk converges to a point of M . We consider two cases:
• Case I: {xn} is finite. Let ε = min{d(xi, xj) : xi 6= xj}. This minimum

exists, as the set is finite. We have ε > 0 since xi 6= xj means d(xi, xj) 6= 0.
Since xn is Cauchy, there exists N > 0 such that k, l ≥ N implies that
d(xk, xl) < ε. By the construction of ε, for k ≥ N we must have xk = xN ,
so xn converges to xN .
• Case II: {xn} is infinite. Then by the hypothesis it has an accumulation

point x. Since xn is Cauchy, given ε > 0 there exists N > 0 such that
k, l ≥ N implies d(xk, xl) < ε/2. Let ε′ = min{ε/2, d(x, xi) : 1 ≤ i ≤ N−1}.
Since x is an accumulation point for {xn}, there exists an m such that
xm ∈ D(x, ε′) ∩ {xn}. By the construction of ε′, we know m ≥ N . Now by
the triangle inequality, for k ≥ N ,

d(x, xk) ≤ d(x, xm) + d(xm, xk)
≤ ε′ + ε/2
≤ ε,

so xn converges to x.
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In both cases we have shown that xn converges, so it follows that every Cauchy
sequence in M converges, and thus M is complete.

(b) Let M = Z, and let d be the discrete metric. We showed in class that any set with
the discrete metric is complete (as every Cauchy sequence is eventually constant).
Let xn = n. Then A = {xn} is an infinite set in a complete metric space, but A
has no accumulation points, as no set has any accumulation points in the discrete
metric.

(4) (a) We first show that d∞(x, y) ≤ d2(x, y) ≤
√

2d∞x, y(x, y). Indeed, d∞(x, y)2 =
(maxi=1,2(|xi − yi|))2 ≤ (x1 − y1)2 + (x2 − y2)2 = d2(x, y)2, so since d∞(x, y) and
d2(x, y) are both nonnegative, we have d∞(x, y) ≤ d2(x, y). Also d2(x, y)2 = (x1−
y1)2 + (x2 − y2)2 ≤ 2(maxi=1,2 |xi − yi|)2 = 2d∞(x, y)2, so d2(x, y) ≤

√
2d∞(x, y).

We now show that d2 and d∞ are equivalent metrics. Let U be any open set in
the d∞ metric. Then for any x ∈ U there exists ε > 0 such that D∞(x, ε) ⊆ U . If
y ∈ D2(x, ε) then d2(x, y) < ε, so d∞(x, y) < d2(x, y) < ε, and so y ∈ D∞(x, y).
Thus D2(x, ε) ⊆ U , which shows that U is open in the d2 topology, and thus d2

gives a stronger topology than d∞.
For the other direction, let U be an open set in the d2 metric. Then for any x ∈ U
there exists ε > 0 for which D2(x, ε) ⊆ U . Now since d2(x, y) ≤

√
2d∞(x, y),

D∞(x, ε/
√

2) ⊆ D2(x, ε), and thus D∞(x, ε/
√

2) ⊆ U , so U is open in the d∞
metric. Thus d∞ gives a stronger topology than d2.

(b) We first show that d∞ gives a stronger topology than d2. Let U be an open set
in the d2 metric. Then for all f ∈ U there exists ε > 0 such that D2(f, ε) ⊆ U .
Let g ∈ D∞(f, ε). Then

d2(f, g)2 =
∫ 1

0
(f(x)− g(x))2dx

≤
∫ 1

0
sup
x∈[0,1]

(f(x)− g(x))2dx

= ( sup
x∈[0,1]

(f(x)− g(x)))2dx

= d∞(f, g)2

< ε2,

so D∞(f, ε) ⊆ D2(f, ε) ⊆ U , and thus U is open in the d∞ metric.
We finish by showing that there are open sets in the d∞ metric which are not
open in the d2 metric, so d2 does not give a stronger metric than d∞. Consider
the set U = D∞(0, 1), where 0 is the zero function on [0, 1]. This is an open set
in the d∞ metric, and we will show that it is not an open set in the d2 metric,
by showing that for every ε > 0 there is some point of D2(0, ε) which does not lie
in U . Given ε > 0, choose n so that 1/

√
2n+ 1 < ε, and let f(x) = xn. Then

d2(0, f) = 1/
√

2n+ 1 < ε, so f ∈ D2(0, ε). However d∞(0, f) = 1, so f 6∈ U , and
thus U is not open in the d2 metric.


