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(1) Section 4.4, problem 4 Let g : [0, 1] → R , g(t) = f(c(t)).
Then g is continuous and [0, 1] is compact, hence g assumes
minimum and maximum values on [0, 1]. But this is the same
thing as f assumes minimum and maximum values on the curve.

(2) Section 4.5, problem 3 Consider g(x) = f(x)− x. Then g is
a continuous function on the connected set [0, 1] with g(0) ≥ 0,
and g(1) ≤ 0, so by the Intermediate Value Theorem there
exists c ∈ [0, 1] with g(1) ≤ g(c) = 0 ≤ g(0). For that c we have
f(c) − c = 0, so f(c) = c.

(3) Section 4.6, problem 3 No. Consider f(x) = sin(x2). If f
were uniformly continuous then we could find a δ > 0 for which
|y − x| < δ meant that |f(y) − f(x)| < 1. Suppose that this is
the case, and choose x with sin(x2) = 0 for which the closest y
with sin(y2) = ±1 has |y − x| < δ. But then f(y) − f(x) = 1,
contradicting our choice of δ. Choosing x > π/4δ suffices, as
then (x + δ)2 − x2 > π/2, so there is a y with y2 = x2 + π/2
and y − x < δ.

(4) Section 4.6, problem 7

(a) We showed in the first question that
√

x is a continuous
function, so since [0, 1] is closed and bounded and thus
compact we know that it is uniformly continuous.

(b) The function f does not have bounded derivative on (0, 1],
and is not differentiable at 0. So it is necessary to have
bounded derivative to be uniformly continuous. However
having bounded derivative does guarantee that the func-
tion is uniformly continuous.

(5) Section 4.7, problem 1 Let f(x) =
∑n

i=1
|x − xi|. Then

f is the sum of continuous functions, so is continuous. Let
gi(x) = |x − xi|, so f(x) =

∑n

i=1
gi(x). Note that gi(x) =

x − xi for x > xi, and gi(x) = xi − x for x < xi, so g(x) is
differentiable for x 6= xi. However for all n > 0 (gi(xi − 1/n) −
gi(xi))/(−1/n) = −1 while (gi(xi + 1/n) − gi(xi))/(1/n) = 1,
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so limh→0(gi(xi + h)− gi(xi))/h does not exist, and so gi is not
differentiable at x.

Since the sum of differentiable functions is differentiable, it
follows that f is differentiable for x 6= xi for any i. If f were
differentiable at xi for some i, then f −

∑
j 6=i gj, which is the

sum of functions which are all differentiable at xi, would be
differentiable at xi. But this function is gi, which we just showed
is not differentiable at xi. So f fails to be differentiable exactly
at the points xi.

(6) Section 5.1, problem 2 Section 5.1, problem 2: The se-
qence fn doesn’t converge uniformly. In fact fn converges point-
wise to the function f(x) given by :

f(x) = x for x < 1 and f(1) = 0

This function f(x) is not continuous at x = 1, so the conver-
gence can’t be uniform (see Proposition 5.1.4).

(7) Chapter 5 exercises, problem 20

(a) (Picture omitted).
(b) Set gk(x) = (1/4k−1)g(4k−1x). Note that |gk(x)| ≤ 1/(2 ·

4k−1) and
∑∞

k=1
1/(2 · 4k−1) converges to 2/3, so f(x) =∑∞

k=1
converges uniformly by the Weierstrass M-test. Since

the space of bounded continuous functions is complete (See
section 5.5), we know that f is continuous.

(c) Let fk =
∑k

n=1
gn(x). Fix a point x ∈ R. We will show that

f is not differentiable at x. We first define two sequences
which converge to x. On any bounded interval gk(x) is
differentiable except at a finite number of points. Let xk

be the greatest such point less than or equal to x, and
let yk be the least point greater than x. For example, if
x = 1/3, x1 = 0, y1 = 1/2, x2 = 1/4, y2 = 3/8, . . . Note
that 0 ≤ x − xk < 1/(2 · 4k−1), 0 < yk − x ≤ 1/(2 · 4k−1),
and yk − xk = 1/(2 · 4k−1).
Note also that gl(xk) = gl(yk) = 0 for l > k, so fk(xk) =
f(xk) and fk(yk) = f(yk).
If l ≤ k then xk, xk+1, yk, and yk+1 all lie on the same
linear “branch” of gl(x), so (gl(xk) − gl(yk))/(xk − yk) =
(gl(xk+1)− gl(xk+1))/(xk+1 − yk+1). This ratio is either +1
or −1, depending on which slope of the branch of gl. Set
hk = (fk(xk) − fk(yk))/(xk − yk). We just showed that
|hk+1 − hk| = |(gk+1(xk+1) − gk+1(yk+1))/(xk+1 − yk+1)| =
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1, so the sequence hk is not Cauchy so does not con-
verge. Note that by the previous paragraph hk = (f(xk)−
f(yk))/(xk − yk).
To complete the proof we need the following lemma:

Lemma 1. If a function h : R → R is differentiable at y,

then given ε > 0 there is δ > 0 for which if x < y < z with

y − x, z − y < δ then

|h(z) − h(x)

z − x
− h′(y)| < ε.

Proof. Since h′(y) exists, given ε > 0 there is a δ > 0 for
which if 0 < |y′ − y| < δ, then

|h(y′) − h(y)

y′ − y
− h′(y)| < ε,

so if y′ > y we have h′(y)(y′−y)−ε(y′−y) < h(y′)−h(y) <
h′(y)(y′ − y) + ε(y′ − y). If y′ < y after rearranging we get
h′(y)(y − y′) − ε(y − y′) < h(y) − h(y′) < h′(y)(y − y′) +
ε(y − y′). Substituting in y′ = z to the first equation and
y′ = x into the second, and adding

h′(y)(z − x) − ε(z − x) < h(z) − h(x) < h′(y)(z − x) + ε(z − x),

since z−x = (z− y)+ (y−x). Dividing through by z−x,
which is positive, gives the desired result. �

Now suppose that f is differentiable at x. Given ε > 0, pick
δ as in the lemma, and chose N such that 1/(2 · 4k−1) < δ
for k > N . Then the lemma says that |hk − f ′(x)| < ε
for k > N . This shows that hk converges to f ′(x), which
contradicts our assertion that it is not even Cauchy. From
this we conclude that f is not differentiable at x.
The idea of this proof is due to Alessandro Magnani.

(8) Chapter 5 exercises, problem 23 No. Let f(x) = 1 for
x 6= 0, and let f(0) = 2. Then f ◦ f(x) = 1 for all x ∈ R, so
f ◦ f is continuous, but f is not continuous.


