MATH 171-HOMEWORK 2 SOLUTIONS

We first show that \mathbb{R} has the Archimedean property: For any $x \in \mathbb{R}$, there is an integer n with $n>x$. To see this, note that the Dedekind cut corresponding to x is not all of \mathbb{Q}, so there exists $q \in \mathbb{Q}$ with $q \notin x$. We may assume $q>0$ (by taking $q=1$ if our first choice of q is nonpositive). Write $q=a / b$, with $a, b \in \mathbb{N}$. Then $2 a>q$, so $x \subsetneq \overline{2 a}$, and thus $2 a$ is an integer greater than x.
(1) (a) For $r=1 / 2, d_{0}=0, d_{1}=4$, and $d_{k}=9$ for $k \geq 2$. For $r=-1 / 3, d_{0}=-1$, and $d_{k}=6$ for $k \geq 1$.
(b) To construct each d_{k} we just need to find the largest integer less than a given number, so we need only show that this always exists. In other words, we show that if s is any real number, there is a largest integer less than s.
If s is positive, let S be the set of all natural numbers greater than s. We know that S is nonempty because of the Archimedean property. Since \mathbb{N} is well ordered, S has a smallest element, d. Because $s>0$, we know that $d-1 \geq 0$, which means that $d-1<s$. We now have that $d-1$ is the greatest integer less than s. If s is negative, let S be the set of all natural numbers greater than $-s$. Again, S is nonempty, and contains a smallest element d. Note that $-d<s$, and $-d+1>s$, so $-d$ is the greatest integer less than s.
(c) Let $r_{k}^{\prime}=r-r_{k}$. Note that $r_{k}^{\prime}=r-r_{k}=r-r_{k-1}-$ $d_{k} / 10^{k}=r_{k-1}^{\prime}-d_{k} / 10^{k}$, and d_{k} is chosen so that $d_{k}<$ $10^{k} r_{k-1}^{\prime}$. This means that $r_{k}^{\prime}>0$ for all $k \geq 0$. This in turn means that $d_{k+1} \geq 0$, as it is the largest integer less than a strictly positive number. Now suppose that $d_{k} \geq 10$ for some $k \geq 1$. This means that $10<10^{k} r_{k-1}^{\prime}$, so $10^{k-1}\left(r-r_{k-1}\right)>1$. Now $10^{k-1}\left(r-r_{k-1}\right)=10^{k-1}(r-$ $\left.r_{k-2}-d_{k-1} / 10^{k-1}\right)=10^{k-1} r_{k-2}^{\prime}-d_{k-1}$, so the fact that this quantity is greater than one contradicts the choice of d_{k-1} as the greatest integer less than $10^{k-1} r_{k-2}^{\prime}$. This means that $d_{k}<10$ for all $k>1$.
(d) Given $\epsilon>0$, choose $N>0$ such that $10^{N}>\lceil 1 / \epsilon\rceil$. This is possible because $10^{k}>k$ for all $k>0$ (check!), and the Archimedean property guarantees the existence of an
integer greater than $\lceil 1 / \epsilon\rceil$. Then if $k>N, r-r_{k}=r_{k}^{\prime}<$ $\left(d_{k+1}+1\right) / 10^{k+1}<10 / 10^{k+1}<1 / 10^{k}<\epsilon$, so r_{k} converges to r.
(e) Let $s_{k}=\sum_{l=0}^{k} c_{l} / 10^{l}$ (this was terrible notation to also call this $r_{k}!$) Then s_{k} is an increasing sequence, so to show that it converges it suffices to show that it is bounded above by $c_{0}+1$. Now $s_{k} \leq c_{0}+\sum_{l=1}^{k} 9 / 10^{l}=c_{0}+1-1 / 10^{k}$, where the last inequality follows from the formula for summing a geometric series. This shows that the increasing sequence s_{k} is bounded above, and thus converges, since \mathbb{R} is complete. The converse requires the following lemma:
Lemma 1. If x_{n} converges to x, and there is some $M>0$ such that $x_{n} \leq B$ for $n>M$, then $x \geq B$.

Proof. Suppose that $x>B$, and set $\epsilon=B-x$. Then there is some $N>0$ for which $\left|x-x_{n}\right|<\epsilon$ for all $n>N$. But for $n>\max (N, M),\left|x-x_{n}\right| \geq|x-B|=\epsilon$, so N does not exist, and so we conclude that $x \geq B$.

Suppose that there is no $N>0$ for which $c_{l}=0$ for all $l>$ N, so $s_{k}<r$ for all $k \geq 0$. We now show that $c_{k}=d_{k}$ for all k. The proof is by induction on k. Lemma 1 says that $s_{k}<c_{0}+1$ for all k. It now follows from the construction of d_{0} that $d_{0}=c_{0}$. Suppose that $d_{l-1}=c_{l-1}$ for some $l>1$. Recall that d_{k} was chosen so that d_{k} was the largest integer less than $10^{k}\left(r-r_{k-1}\right)$. If $c_{k}>d_{k}$, then $c_{k}>10^{k}\left(r-r_{k-1}\right)=$ $10^{k}\left(r-s_{k-1}\right)$, so $s_{k}=s_{k-1}+c_{k} / 10^{k}>r$, which contradicts the fact that s_{k} is an increasing sequence converging to r. So we conclude that if $c_{k} \neq d_{k}$, we must have $c_{k}<d_{k}$. But then for $l>k$, we have $s_{k-1}+c_{k} / 10^{k}+\sum_{j=k+1}^{l} 9 / 10^{j}<$ $s_{k-1}+\left(c_{k}+1\right) / 10^{k} \leq s_{k_{1}}+d_{k} / 10^{k}=r_{k}$, where the first inequality again arises from summing the geometric series. Now Lemma 1 says that $r<r_{k}$, and thus $r<r_{l}$ for all $l \geq k$, since r_{k} is an increasing sequence. Let $x_{k}=r-r_{k}$. We just showed that $x_{l}<r-r_{k}<0$ for $k \geq l$, so its limit should be less than or equal to $r-r_{k}$. But x_{k} converge to zero. From this contradiction we conclude that $c_{k}=d_{k}$, which completes the induction step.
(2) Section 1.2, problem 3: Let $\epsilon>0$ be given. The Archimedean property says that we can choose an integer $N>\left(1-\epsilon^{2}\right) / 2 \epsilon$. Then for $n>N$, we have $1-\epsilon^{2}<2 n \epsilon$, so $n^{2}+1<(\epsilon+n)^{2}$.

Thus $\sqrt{n^{2}+1}<\epsilon+n$, and so $x_{n}<\epsilon$. As $x_{n}>0$ for all n, this shows that x_{n} converges to 0 .
(3) Section 1.7, problem 1: For the sup norm, $d(f, g)=\| f-$ $g \|=\sup \{|f(x)|: x \in[0,1]\}=1$.

For the norm of Example 1.7.7, $d(f, g)=\|f-g\|=\sqrt{\langle f-g, f-g\rangle}=$ $\sqrt{\int_{0}^{1}(1-x)^{2} d x}=1 / \sqrt{3}$.
(4) End of Chapter 1 exercises, problem 10: Let d be metric on a set M, and define $\rho(x, y)=d(x, y) /(1+d(x, y))$. Then $d(x, y) \geq 0$ for all x and y, so $\rho(x, y)$ is the quotient of a nonnegative number by a strictly positive number, and is thus nonnegative. If $\rho(x, y)=0$, then $d(x, y) /(1+d(x, y))=0$, so $d(x, y)=0$. Next, note that $\rho(x, y)=d(x, y) /(1+d(x, y))=$ $d(y, x) /(1+d(y, x))=\rho(y, x)$, since $d(x, y)$ is symmetric. Finally, we show that ρ satisfies the triangle inequality. Since d satisfies the triangle inequality, we have

$$
\begin{aligned}
d(x, z) & \leq d(x, y)+d(y, z) \\
& \leq d(x, y)+d(y, z)+2 d(x, y) d(y, z)+d(x, y) d(x, z) d(y, z)
\end{aligned}
$$

since $d(u, v)$ is always nonnegative. Now adding the same thing to both sides we get

$$
\begin{aligned}
& d(x, z)+d(x, z) d(x, y)+d(x, z) d(y, z)+d(x, y) d(x, z) d(y, z) \\
& \leq d(x, y)+d(x, y) d(x, z)+d(x, y) d(y, z)+d(x, y) d(x, z) d(y, z) \\
& +d(y, z)+d(x, y) d(y, z)+d(y, z) d(x, z)+d(x, y) d(x, z) d(y, z),
\end{aligned}
$$

which means

$$
\begin{aligned}
& d(x, z)(1+d(x, y))(1+d(y, z)) \leq d(x, y)(1+d(x, z))(1+d(y, z)) \\
& +d(y, z)(1+d(x, z))(1+d(x, y))
\end{aligned}
$$

The triangle inequality for $\rho(x, y)$ now follows from dividing both sides by $(1+d(x, y))(1+d(x, z))(1+d(y, z))$.

