
MATH 171 - HOMEWORK 2 SOLUTIONS

We first show that R has the Archimedean property: For any x ∈ R,
there is an integer n with n > x. To see this, note that the Dedekind
cut corresponding to x is not all of Q, so there exists q ∈ Q with q 6∈ x.
We may assume q > 0 (by taking q = 1 if our first choice of q is non-
positive). Write q = a/b, with a, b ∈ N. Then 2a > q, so x ( 2a, and
thus 2a is an integer greater than x.

(1) (a) For r = 1/2, d0 = 0, d1 = 4, and dk = 9 for k ≥ 2. For
r = −1/3, d0 = −1, and dk = 6 for k ≥ 1.

(b) To construct each dk we just need to find the largest integer
less than a given number, so we need only show that this
always exists. In other words, we show that if s is any real
number, there is a largest integer less than s.
If s is positive, let S be the set of all natural numbers
greater than s. We know that S is nonempty because of
the Archimedean property. Since N is well ordered, S has a
smallest element, d. Because s > 0, we know that d−1 ≥ 0,
which means that d − 1 < s. We now have that d − 1 is
the greatest integer less than s. If s is negative, let S be
the set of all natural numbers greater than −s. Again, S
is nonempty, and contains a smallest element d. Note that
−d < s, and −d+ 1 > s, so −d is the greatest integer less
than s.

(c) Let r′k = r − rk. Note that r′k = r − rk = r − rk−1 −
dk/10k = r′k−1 − dk/10k, and dk is chosen so that dk <
10kr′k−1. This means that r′k > 0 for all k ≥ 0. This
in turn means that dk+1 ≥ 0, as it is the largest integer
less than a strictly positive number. Now suppose that
dk ≥ 10 for some k ≥ 1. This means that 10 < 10kr′k−1,
so 10k−1(r − rk−1) > 1. Now 10k−1(r − rk−1) = 10k−1(r −
rk−2−dk−1/10k−1) = 10k−1r′k−2−dk−1, so the fact that this
quantity is greater than one contradicts the choice of dk−1

as the greatest integer less than 10k−1r′k−2. This means
that dk < 10 for all k > 1.

(d) Given ε > 0, choose N > 0 such that 10N > d1/εe. This
is possible because 10k > k for all k > 0 (check!), and
the Archimedean property guarantees the existence of an
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integer greater than d1/εe. Then if k > N , r − rk = r′k <
(dk+1 + 1)/10k+1 < 10/10k+1 < 1/10k < ε, so rk converges
to r.

(e) Let sk =
∑k

l=0 cl/10l (this was terrible notation to also call
this rk!) Then sk is an increasing sequence, so to show that
it converges it suffices to show that it is bounded above by
c0+1. Now sk ≤ c0+

∑k
l=1 9/10l = c0+1−1/10k, where the

last inequality follows from the formula for summing a geo-
metric series. This shows that the increasing sequence sk
is bounded above, and thus converges, since R is complete.
The converse requires the following lemma:
Lemma 1. If xn converges to x, and there is some M > 0
such that xn ≤ B for n > M , then x ≥ B.

Proof. Suppose that x > B, and set ε = B−x. Then there
is some N > 0 for which |x − xn| < ε for all n > N . But
for n > max(N,M), |x− xn| ≥ |x−B| = ε, so N does not
exist, and so we conclude that x ≥ B.

�

Suppose that there is no N > 0 for which cl = 0 for all l >
N , so sk < r for all k ≥ 0. We now show that ck = dk for
all k. The proof is by induction on k. Lemma 1 says that
sk < c0 + 1 for all k. It now follows from the construction
of d0 that d0 = c0. Suppose that dl−1 = cl−1 for some l > 1.
Recall that dk was chosen so that dk was the largest integer
less than 10k(r−rk−1). If ck > dk, then ck > 10k(r−rk−1) =
10k(r− sk−1), so sk = sk−1 + ck/10k > r, which contradicts
the fact that sk is an increasing sequence converging to r.
So we conclude that if ck 6= dk, we must have ck < dk. But
then for l > k, we have sk−1 + ck/10k +

∑l
j=k+1 9/10j <

sk−1 + (ck + 1)/10k ≤ sk1 + dk/10k = rk, where the first
inequality again arises from summing the geometric series.
Now Lemma 1 says that r < rk, and thus r < rl for all
l ≥ k, since rk is an increasing sequence. Let xk = r − rk.
We just showed that xl < r − rk < 0 for k ≥ l, so its limit
should be less than or equal to r − rk. But xk converge to
zero. From this contradiction we conclude that ck = dk,
which completes the induction step.

(2) Section 1.2, problem 3: Let ε > 0 be given. The Archimedean
property says that we can choose an integer N > (1 − ε2)/2ε.
Then for n > N , we have 1 − ε2 < 2nε, so n2 + 1 < (ε + n)2.
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Thus
√
n2 + 1 < ε+ n, and so xn < ε. As xn > 0 for all n, this

shows that xn converges to 0.
(3) Section 1.7, problem 1: For the sup norm, d(f, g) = ‖f −

g‖ = sup{|f(x)| : x ∈ [0, 1]} = 1.

For the norm of Example 1.7.7, d(f, g) = ‖f−g‖ =
√
〈f − g, f − g〉 =√∫ 1

0
(1− x)2dx = 1/

√
3.

(4) End of Chapter 1 exercises, problem 10: Let d be metric
on a set M , and define ρ(x, y) = d(x, y)/(1 + d(x, y)). Then
d(x, y) ≥ 0 for all x and y, so ρ(x, y) is the quotient of a non-
negative number by a strictly positive number, and is thus non-
negative. If ρ(x, y) = 0, then d(x, y)/(1 + d(x, y)) = 0, so
d(x, y) = 0. Next, note that ρ(x, y) = d(x, y)/(1 + d(x, y)) =
d(y, x)/(1 + d(y, x)) = ρ(y, x), since d(x, y) is symmetric. Fi-
nally, we show that ρ satisfies the triangle inequality. Since d
satisfies the triangle inequality, we have

d(x, z) ≤ d(x, y) + d(y, z)

≤ d(x, y) + d(y, z) + 2d(x, y)d(y, z) + d(x, y)d(x, z)d(y, z)

since d(u, v) is always nonnegative. Now adding the same thing
to both sides we get

d(x, z) + d(x, z)d(x, y) + d(x, z)d(y, z) + d(x, y)d(x, z)d(y, z)
≤ d(x, y) + d(x, y)d(x, z) + d(x, y)d(y, z) + d(x, y)d(x, z)d(y, z)
+d(y, z) + d(x, y)d(y, z) + d(y, z)d(x, z) + d(x, y)d(x, z)d(y, z),

which means

d(x, z)(1 + d(x, y))(1 + d(y, z)) ≤ d(x, y)(1 + d(x, z))(1 + d(y, z))
+d(y, z)(1 + d(x, z))(1 + d(x, y)).

The triangle inequality for ρ(x, y) now follows from dividing
both sides by (1 + d(x, y))(1 + d(x, z))(1 + d(y, z)).


