Final Exam, Math 171

Spring, 2002

- 1. Let A be a subset of a metric space (M, d). We say that $x \in M$ is a limit point of A if for every $\epsilon > 0$ the ball $D(x, \epsilon)$ contains a point of A.
 - (a) Show that every accumulation point is a limit point. Is the converse true? (Prove or give a counter-example).
 - (b) If x is a limit point of A, show that there is a sequence $x_n \in A$ with $x_n \to x$.
 - (c) Show that a set $A \subseteq M$ is closed if and only if it contains all of its limit points.
- 2. (a) Give the definition for a set A in a metric space M to be totally bounded.
 - (b) What is the relationship between a set being bounded and being totally bounded? (ie does one imply the other?) Prove your assertion, and give a counterexample if the converse fails.
- 3. (a) Show that a function $f : (M, d) \to (N, \rho)$ is continuous if and only if $f^{-1}(B) \subseteq M$ is open for every open set $B \subseteq N$.
 - (b) If $f: M \to N$ is continuous, and C is a open set in M, is f(C) a open set in N? Prove or give a counter-example. What about if "open" is replaced by "closed"?
- 4. Let $f_k : (A, d) \to (N, \rho)$ be a sequence of functions.
 - (a) Give the definition for the sequence f_k to converge pointwise to a function $f: A \to N$.
 - (b) Give the definition for the sequence f_k to converge uniformly to a function $f: A \to N$.
 - (c) Give an example of a sequence of functions f_k which converge pointwise to some function f, but do not converge uniformly.
 - (d) Let $f_k : M \to V$ and $g_k : M \to V$ be two sequences of functions from a metric space (M, d) to a normed space V. If f_k converges uniformly to f and g_k converges uniformly to g, show that $f_k + g_k$ converges uniformly to f + g.
- 5. Let C(I) be the metric space of continuous functions from [0, 1] to \mathbb{R} , with the sup metric. Let $A = \{f \in C(I) : f(x) > 0 \text{ for all } x \in [0, 1]\}$. Show that A is open in C(I).

- 6. (a) If $f : (M, d) \to (M, d)$ is continuous, show that the displacement function $g : (M, d) \to \mathbb{R}$ given by g(x) = d(x, f(x)) is continuous. Here \mathbb{R} has the usual metric.
 - (b) State the definition for a function $h: (M, d) \to (N, \rho)$ to be uniformly continuous.
 - (c) If $f: (M, d) \to (M, d)$ is uniformly continuous, is the displacement function $g: (M, d) \to \mathbb{R}$ uniformly continuous?
- 7. We say that a function $f: (M, d) \to (M, d)$ is a *contraction* if there exists $0 \le k < 1$ for which $d(f(x), f(y)) \le k \cdot d(x, y)$ for all $x, y \in M$.
 - (a) State the Contraction Mapping Principle.
 - (b) Show that you could not replace the condition that $d(f(x), f(y)) \leq k \cdot d(x, y)$ with the one that d(f(x), f(y)) < d(x, y) in the Contraction Mapping Principle. Hint: Consider the function $f(x) = x + \frac{1}{x}$ on $M = [1, \infty)$.
 - (c) Show that we can relax the condition if M is compact; ie Show that if M is compact and d(f(x), f(y)) < d(x, y) for all $x, y \in M$ then f has a fixed point. Hint: Question 6.