HOMEWORK 2, MATH 171, SPRING 2003

DUE THURSDAY APRIL 17

(1) **Decimal Expansion** Let r be a real number. We define the decimal expansion recursively as follows: Let $d_0 \in \mathbb{Z}$ be the largest integer less than r.

If d_0, \ldots, d_k have been defined, let $r_k = \sum_{l=0}^k d_l / 10^l$, and let $r' = r - r_k$. Let d_{k+1} be the largest integer less than $10^{k+1}r'$. (a) Determine d_0, d_1, \ldots for r = 1/2 and r = -1/3.

- (b) Show that d_k exists for all k > 0. (ie, show that there is a largest integer less than r or $10^{k+1}r'$.)
- (c) Show that $0 \le d_k \le 9$ for k > 0.
- (d) Show that the sequence r_0, r_1, r_2, \ldots converges to r.
- (e) Show that if c_0, c_1, c_2, \ldots is a sequence of integers with $0 \le c_k \le 9$ for k > 0 then the sequence $r_k = \sum_{l=0}^k c_l/10^l$ converges. Let r be its limit. Show that either there is some N > 0 for which $c_l = 0$ for all l > N or $c_l = d_l$ for all $l \ge 0$, where d_0, d_1, d_2, \ldots is the sequence obtained as above from the real number r.
- (2) From the textbook: Section 1.2, #3, page 45
- (3) Section 1.7, #1, page 70
- (4) Exercises at the end of Chapter 1 (pages 97-102), #10