HOMEWORK 2, MATH 171, SPRING 2003

DUE THURSDAY APRIL 17

(1) Decimal Expansion Let r be a real number. We define the decimal expansion recursively as follows: Let $d_{0} \in \mathbb{Z}$ be the largest integer less than r.
If d_{0}, \ldots, d_{k} have been defined, let $r_{k}=\sum_{l=0}^{k} d_{l} / 10^{l}$, and let $r^{\prime}=r-r_{k}$. Let d_{k+1} be the largest integer less than $10^{k+1} r^{\prime}$.
(a) Determine d_{0}, d_{1}, \ldots for $r=1 / 2$ and $r=-1 / 3$.
(b) Show that d_{k} exists for all $k>0$. (ie, show that there is a largest integer less than r or $10^{k+1} r^{\prime}$.)
(c) Show that $0 \leq d_{k} \leq 9$ for $k>0$.
(d) Show that the sequence $r_{0}, r_{1}, r_{2}, \ldots$ converges to r.
(e) Show that if $c_{0}, c_{1}, c_{2}, \ldots$ is a sequence of integers with $0 \leq c_{k} \leq 9$ for $k>0$ then the sequence $r_{k}=\sum_{l=0}^{k} c_{l} / 10^{l}$ converges. Let r be its limit. Show that either there is some $N>0$ for which $c_{l}=0$ for all $l>N$ or $c_{l}=d_{l}$ for all $l \geq 0$, where $d_{0}, d_{1}, d_{2}, \ldots$ is the sequence obtained as above from the real number r.
(2) From the textbook: Section 1.2, \#3, page 45
(3) Section 1.7, \#1, page 70
(4) Exercises at the end of Chapter 1 (pages 97-102), \#10

