MATH 111 HOMEWORK 4, WINTER 2004

DUE WEDNESDAY, FEBRUARY 18

(1) This exercise explains how we can use Gröbner bases to solve polynomial equations.
(a) Let $S=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ have the lexicographic term order. Let I be an ideal in S. Show that if I contains any polynomials containing only powers of x_{n}, then there must be one in the reduced Gröbner basis for I.
(b) Let I be such that $V(I)$ is a finite set. Show that $I(V(I))$ must contain a polynomial only containing only powers of x_{n}.
(c) We will show later in the course that when we work over the complex numbers then $I(V(I))$ is the radical of I (this is the Hilbert Nullstellensatz). Assuming this, show that I contains a polynomial containing only powers of x_{n}.
(d) If we know a polynomial in I containing only powers of one variable, we can solve for the roots of this polynomial (symbolically or numerically), and use this to reduce to a simpler problem. Use this idea to solve the system of equations:

$$
\begin{array}{r}
x^{2}-3 x y+y^{2}=0 \\
x^{3}-8 x+3 y=0 \\
x^{2} y-3 x+y=0
\end{array}
$$

Give your answer symbolically (that is, in terms of radicals).
(2) Let $S=k[a, b, c, d]$. Let $I=\left\langle c^{5}-b^{3} d^{2}, a^{2} d-b c^{2}, a^{2} c^{3}-b^{4} d, a^{4} c-\right.$ $\left.b^{5}\right\rangle$.
(a) Show that the given generating set is a Gröbner basis for I with respect to the reverse lexicographic order with $a>$ $b>c>d$.
(b) Compute the lexicographic Gröbner basis for I with respect to this ordering of the variables.
(c) Find a term order for which $\left\langle c^{11}, b c^{2}, b^{3} d^{2}, b^{4} d, b^{5}, a^{2} b^{2} d^{3}, a^{4} b d^{4}\right\rangle$ is the lead term ideal of I. (Hint: What would the reduced Gröbner basis be?)
(3) CLO $2.5 \# 7$
(4) CLO $2.5 \# 10$
(5) CLO 2.6 \#4
(6) CLO $2.6 \# 6$
(7) CLO 2.7 \#6
(8) CLO 2.7 \#7

