MATH 111 HOMEWORK 2

DUE MONDAY, JANUARY 26

- (1) (CLO 1.2 #6) Prove that every single point $(a_1, \ldots, a_n) \in k^n$ is an affine variety. Use this to prove that every finite subset of k^n is an affine variety.
- (2) (CLO 1.2 #8) Show that $X = \{(x, x) : x \in \mathbb{R}, x \neq 1\} \subset \mathbb{R}^2$ is not an affine variety. (The question in the book has further hints).
- (3) (CLO 1.4 #8) An ideal I is *radical* if $f \in I$ if and only if $f^m \in I$ for some positive integer m. Recall $I(V) = \{f \in S : f(x) = 0 \text{ for all } x \in V\}.$
 - (a) Prove that I(V) is always a radical ideal.
- (b) Prove that $\langle x^2, y^2 \rangle$ is not I(V) for any affine variety $V \subset k^2$. (4) (CLO 1.5 #4) If h is the GCD of $f, g \in k[x]$, then prove that
- there are polynomials $A, B \in k[x]$ such that Af + Bg = h.
- (5) (CLO 1.5 #11) The consistency problem asks, given $f_1, \ldots, f_s \in S$, whether $V(f_1, \ldots, f_s) = \emptyset$.
 - (a) Let $f \in \mathbb{C}[x]$ be a nonzero polynomial. Show that $V(f) = \emptyset$ if and only if f is a nonzero constant.
 - (b) If $f_1, \ldots, f_s \in \mathbb{C}[x]$, prove that $V(f_1, \ldots, f_s) = \emptyset$ if and only if $GCD(f_1, \ldots, f_s) = 1$.
 - (c) Describe (in words) an algorithm to determine whether $V(f_1, \ldots, f_s) = \emptyset$ in this case.
- (6) (CLO 1.5 #12-15) Let $f \in \mathbb{C}[x]$.
 - (a) Show that f factors completely. That is, we can write $f = c(x a_1)^{r_1} \dots (x a_l)^{r_l}$.
 - (b) Show that $V(f) = \{a_1, ..., a_l\}.$
 - (c) Let $f_{red} = (x a_1) \dots (x a_l)$. Show that $I(V(f)) = \langle f_{red} \rangle$.
 - (d) The formal derivative of a polynomial $f = a_0 x^n + \ldots a_n \in \mathbb{C}[x]$ is $f' = na_0 x^{n-1} + \ldots a_{n-1}$. Prove that $GCD(f, f') = (x a_1)^{r_1 1} \ldots (x a_l)^{r_l l}$. (The exercise in the book provides more hints)
 - (e) Show that f_{red} = f/GCD(f, f'). This means that we can compute f_{red} without factoring f purely symbolically!.
 (f) What is I(V(x¹¹-x¹⁰+2x⁸-4x⁷+3x⁵-3x⁴+x³+3x²-x-
 - (f) What is $I(V(x^{11}-x^{10}+2x^8-4x^7+3x^5-3x^4+x^3+3x^2-x-1))$? (You may want to use a computer algebra package).