MATH 111 HOMEWORK 2

DUE MONDAY, JANUARY 26

(1) (CLO $1.2 \# 6$) Prove that every single point $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$ is an affine variety. Use this to prove that every finite subset of k^{n} is an affine variety.
(2) (CLO 1.2\#8) Show that $X=\{(x, x): x \in \mathbb{R}, x \neq 1\} \subset \mathbb{R}^{2}$ is not an affine variety. (The question in the book has further hints).
(3) (CLO $1.4 \# 8$) An ideal I is radical if $f \in I$ if and only if $f^{m} \in I$ for some positive integer m. Recall $I(V)=\{f \in S: f(x)=$ 0 for all $x \in V\}$.
(a) Prove that $I(V)$ is always a radical ideal.
(b) Prove that $\left\langle x^{2}, y^{2}\right\rangle$ is not $I(V)$ for any affine variety $V \subset k^{2}$.
(4) (CLO $1.5 \# 4$) If h is the GCD of $f, g \in k[x]$, then prove that there are polynomials $A, B \in k[x]$ such that $A f+B g=h$.
(5) (CLO 1.5 \#11) The consistency problem asks, given $f_{1}, \ldots, f_{s} \in$ S, whether $V\left(f_{1}, \ldots, f_{s}\right)=\emptyset$.
(a) Let $f \in \mathbb{C}[x]$ be a nonzero polynomial. Show that $V(f)=\emptyset$ if and only if f is a nonzero constant.
(b) If $f_{1}, \ldots, f_{s} \in \mathbb{C}[x]$, prove that $V\left(f_{1}, \ldots, f_{s}\right)=\emptyset$ if and only if $G C D\left(f_{1}, \ldots, f_{s}\right)=1$.
(c) Describe (in words) an algorithm to determine whether $V\left(f_{1}, \ldots, f_{s}\right)=\emptyset$ in this case.
(6) (CLO $1.5 \# 12-15)$ Let $f \in \mathbb{C}[x]$.
(a) Show that f factors completely. That is, we can write $f=c\left(x-a_{1}\right)^{r_{1}} \ldots\left(x-a_{l}\right)^{r_{l}}$.
(b) Show that $V(f)=\left\{a_{1}, \ldots, a_{l}\right\}$.
(c) Let $f_{\text {red }}=\left(x-a_{1}\right) \ldots\left(x-a_{l}\right)$. Show that $I(V(f))=\left\langle f_{r e d}\right\rangle$.
(d) The formal derivative of a polynomial $f=a_{0} x^{n}+\ldots a_{n} \in$ $\mathbb{C}[x]$ is $f^{\prime}=n a_{0} x^{n-1}+\ldots a_{n-1}$. Prove that $G C D\left(f, f^{\prime}\right)=$ $\left(x-a_{1}\right)^{r_{1}-1} \ldots\left(x-a_{l}\right)^{r_{l}-l}$. (The exercise in the book provides more hints)
(e) Show that $f_{\text {red }}=f / G C D\left(f, f^{\prime}\right)$. This means that we can compute $f_{\text {red }}$ without factoring f - purely symbolically!.
(f) What is $I\left(V\left(x^{11}-x^{10}+2 x^{8}-4 x^{7}+3 x^{5}-3 x^{4}+x^{3}+3 x^{2}-x-\right.\right.$ $1))$? (You may want to use a computer algebra package).

