
MATH 108, FALL 2002

HOMEWORK 1 SOLUTIONS

These are sample solutions; most of the problems can be solved correctly in more than one way.

(1) Let G be a connected graph on n vertices.

(⇒) Assume that G is a tree. We will show by induction on n that G has n− 1 edges. For n = 1,
the only tree possible is a single vertex with no edges. Now let n > 1, and suppose that every tree
on k vertices has k − 1 edges for all k < n.

Notice that a finite tree with more than one vertex must contain a vertex of degree 1 (often called
a leaf ). To show this, suppose (for contradiction) that the tree does not contain a leaf. Then every
vertex has degree at least 2 (a tree is connected, so none of the vertices can have degree 0). But
then we can obtain a closed path in G: start by walking across any edge, and then always leave a
vertex via an edge other than the edge used to go to the vertex; since there are only finitely many
vertices, eventually the same vertex is reached twice. Such a walk yields a closed path in the tree,
contradicting it being a tree.

Now pick a leaf l in G, and let G′ be the graph obtained by deleting l and its edge from G. Note
that G′ is a tree, since the deleted edge is not needed to go from x 6= l to y 6= l (if we visited l in
G, we would have to turn back and return to the previous vertex anyway since l is a leaf). By the
inductive hypothesis, G′ has n− 2 edges. Hence, G has n− 1 edges.

(⇐) Now assume that G is not a tree, and show that G does not have n − 1 vertices. Since G is
connected but not a tree, G must have a simple closed path C. Delete any edge e1 of C from the
graph. The resulting graph G′ is still connected since in any walk that relied on e1, we can detour
by going around the rest of C instead of using e1. If G′ is a tree, stop. Otherwise, find a simple
closed path in G′ and continue as above. This process must terminate in a tree T since there are
only finitely many edges in G. The resulting tree T has n− 1 edges by the previous part, so G has
more than n− 1 edges since at least one edge was deleted in the process.

(2) Suppose we can place a1, a2, a3, b1, b2 and b3 in the plane in such a way that the drawing of K3,3

is planar. The quadrilateral formed by the edges (a1, b1), (a2, b1), (a2, b2) and (a1, b2) divides the
plane into two pieces. Since there is an edge between a3 and b3, these two points must lie either
inside or outside the quadrilateral. Suppose first that they lie inside the quadrilateral. Now the
edges (a3, b1) and (a3, b2) divide the quadrilateral into two sections, one containing a1, and one
containing a2. We now consider the placement of b3. If it is in the section containing a1, then the
edge (a2, b3) must cross some other edge. If it is in the section containing a2, then the edge (a1, b3)
must cross some other edge. So we conclude that a3 and b3 lie on the outside of this quadrilateral.
But now an almost identical argument shows that this is also imposible, so we conclude that K3,3

is not planar.

(3) Let G be a simple graph with n vertices. We use the pigeonhole principle: if k objects are
placed in m boxes, with k > m, then at least one box will contain more than one object. The
“objects” are the n vertices and the “boxes” are the possible degrees, which are 0, 1, . . . , n-1. We
put a vertex in box d iff the vertex has degree d. There are n vertices and n possible degrees, so we
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2cannot yet use the pigeonhole principle. However, note that if some vertex has degree 0, then no
vertex can have degree n-1. So the number of degrees that occur in G is strictly less than n. Thus
by the pigeonhole principle, there are two vertices sharing the same degree.

(4) The i, j entry of A2 is
∑n

k=1 aikakj. The term aikakj counts the number of walks of length 2
from i to j through k, since such a walk is obtained by choosing an edge from i to k and then
choosing an edge from k to j. Therefore,

∑n
k=1 aikakj counts the number of walks of length 2 from

i to j. So the i, j entry of A2 gives the number of walks of length 2 in the graph from i to j.

(5) The 6 nonisomorphic trees on 6 vertices are drawn below:

Only the second and fourth trees have the same sets of degrees, so only the second and fourth trees
could be isomorphic. To see that they are nonisomorphic, note that the 2 vertices of degree 2 are
adjacent in the second tree but not in the fourth tree. So these 6 trees are nonisomorphic.

As in Example 2.2, the number of spanning trees in K6 isomorphic to a specific tree on 6 vertices is
6! divided by the size of the automorphism group of the tree. The first tree has 2 automorphisms
(one where the 2 leaves are swapped, and the identity). The second tree also has 2 automorphisms
(the degree 3 vertex and the degree 2 vertex adjacent to it must be fixed, but the 2 leaves adjacent to
the degree 3 vertex can be swapped). The third tree has 23 = 8 automorphisms (an automorphism
of this tree is determined by choosing whether or not to swap the 2 degree 3 vertices, whether or
not to swap the 2 children of one of the degree 3 vertices, and whether or not to swap the 2 children
of the other degree 3 vertex). Similarly, the fourth tree has 2 automorphisms, the fifth tree has
3! = 6 automorphisms, and the sixth tree has 5! = 120 automorphisms.

Thus, the numbers of distinct spanning trees in K6 isomorphic to these trees are 360, 360, 90, 360,
120, and 6, respectively. We check that this is correct by noting that 360+360+90+360+120+6 =
1296 = 64.

(6) Draw the dual graph, whose vertices are the regions of the squiggle, and for which there is an
edge if two regions are adjacent. It suffices to show that this graph is bipartite. The dual graph can
be drawn as a planar graph, with each region of the new graph corresponding to one place where
the squiggle crosses itself. Since the squiggle leaves each crossing it enters, each region of the new
graph is surrounded by a polygon with an even number of sides. We now show that this means
that the graph is bipartite. We will use the following lemma.

Lemma 1. A graph is bipartite if and only if it contains no closed path of odd length.

Proof. Suppose first that the graph is bipartite, so the vertices can be divided into two groups X
and Y , and every edge joins a vertex in X to a vertex in Y . Then any path of odd length joins a
vertex in X to a vertex in Y , while a path of even length joins a vertex in X to another (possibly



3identical) vertex in Y or a vertex in Y to a vertex in Y . This means that a closed path must have
even length.

Now suppose that G is a graph which is not bipartite. Pick a starting vertex v0 of the graph, and
colour that red. Colour its neighbours blue, and continue, at each stage colouring a yet-uncoloured
vertex which is adjacent to a coloured one the opposite colour. Stop if which colour is opposite is
ever unclear. If we never get stuck we would have shown that the graph is bipartite, so we will get
stuck at some vertex v1. Then there is a path of alternating colours from v0 to v1 which would
suggest colouring v1 blue (so the path has even length). There is also a path of alternating colours
from v0 to v1 which would suggest colouring v1 red (so the path has odd length). Cobbling these
two paths together gives a closed path of odd length.

�

Suppose now that the dual graph contains a closed path of odd length. We may assume that this
path is simple, as if it revisits a vertex either the length of the path up to that point or the length
of the path after that point must be odd. Since the graph is planar, this path encloses a number k
of regions of the graph. Choose the simple closed path so that k is as small as possible. Since each
region is surrounded by an even polygon we know that k ≥ 2. Now take an edge of the path and
notice that we can “push it across” the region it is adjacent to to get a new closed path also of odd
length which encloses k − 1 regions.

This contradicts the fact that k was as small as possible, so we conclude that the path did not
exist, so the graph was bipartite and so our squiggle could be coloured with only two colours.

(7) Represent the party-goers as vertices in a graph, and draw a red edge between x and y if x
and y know each other, and a blue edge between them otherwise. We need to show that this graph
contains a monochromatic triangle (one with edges all red or all blue). Fix a vertex x. There are 5
edges emanating from x, of which either at least 3 are red or at least 3 are blue. Suppose without
loss of generality that at least 3 of the edges are red, say {x, y}, {x, z}, {x,w}. If any two of y, z, w
have a red edge between them, then x together with those two form a red triangle. Otherwise,
y, z, w form a blue triangle. So in all cases, there is a monochromatic triangle, which corresponds
to 3 people all of whom know each other or none of whom know each other.

If there are 5 people instead of 6, the claim is false. For example, labelling the vertices of the graph
as 1, . . . , 5, the red edges could be {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1} (with all other edges blue), in
which case there is no monochromatic triangle.

Now assume we need 4 people such that all know each other or none know each other, i.e., we need
a monochromatic copy of K4. We now show that 20 vertices suffice.



4As above, fix a vertex x. Then x has at least 10 red edges or at least 10 blue edges. Assume without
loss of generality that x has 10 red edges, say {x, y1}, . . . , {x, y10}. If there is a red triangle yzw
among y1, . . . , y10, then xyzw is a red K4. So assume there is no red triangle among the yi.

Now consider the edges between y1 and all the other yi. Of these 9 edges, either at least 6 are blue
or at least 4 are red. First assume at least 6 are blue, say {y1, z1}, . . . , {y1, z6}. Then there is a
monochromatic triangle among z1, . . . , z6, which must be blue. This triangle together with y1 is
then a blue K4. Now assume instead that at least 4 of the edges between y1 and the other yi are
red, say {y1, w1}, . . . , {y1, w4}. None of the edges {wi, wj} can be red since that would give a red
triangle. So all of the edges {wi, wj} are blue, which gives a blue K4. Thus, in all cases there is a
monochromatic K4.

Remarks: With more work, it can be shown that 18 people suffice for the 4 case, and 18 cannot
be improved upon since it is possible to find an example with 17 people where there is no set of
4 people who all know each other or none of whom know each other. Amazingly, the smallest
number of people needed for the case of 5 (and higher) is unknown, though progress has been made
in finding bounds.

(8) (a) Suppose that |{j : φ(j) ≤ i}| < i for some i. Note that if φ(j) > i, then car j parks in a
space > i. So if car j parks in a space ≤ i, then φ(j) ≤ i, which shows that the set of cars which
park in spaces ≤ i is a subset of {j : φ(j) ≤ i}. Therefore, fewer than i cars park in spaces 1, . . . , i,
which implies that not everyone can park.

Conversely, assume that not all cars can park. Then some space i is left empty. Since there is an
empty space at i, any car j with φ(j) ≤ i parks at a space < i (since such a car would prefer i to
any space > i). So the number of cars j with φ(j) ≤ i is less than or equal to the number of cars
parked in spaces 1, . . . , i− 1, showing |{j : φ(j) ≤ i}| < i.

Thus, everyone can park iff |{j : φ(j) ≤ i}| ≥ i for all i.

(b) As in the hint, suppose that instead of a one-way street the cars park in a circle with a bonus
space 0, and the same parking rules (the cars still start at space 1, but can wrap around the circle
if necessary). We allow φ(j) = 0. Note that in this scenario, everyone can park for any function φ,
since a car whose preferred space is taken can just continue around the circle until a free space is
found.

Moreover, the function φ is a parking function (in the original sense) iff the bonus space 0 is not
parked in. Let S be the set of all functions φ from the set of cars into the set of parking spaces
{1, . . . , n, 0}. Partition S into the sets S0, . . . , Sn−1, where Si is the set of φ such that space i
does not get parked in. These sets Si all have the same size since shifting everyone’s preferred
space by k spaces along the circle also shifts the space that gets left empty by k spaces. So
|S0| = 1

n+1 |S| = (n+ 1)n−1. Thus, there are (n+ 1)n−1 parking functions in the original sense.

Remarks: The number n+ 1n−1 should look familiar, as the number of labeled trees on n + 1
vertices. This suggests searching for a natural bijection between parking functions and trees. Such
bijections have been found, although it may require a lot of work to prove that they are bijections.


