MATH 108, FALL 2002

HOMEWORK 7 SOLUTIONS

(1) Represent the grid coloring as an n by n matrix $A=\left(a_{i j}\right)$ by putting $a_{i j}=1$ if the square in row i, column j is blue, and $a_{i j}=0$ if that square is red. Then the entries of A are nonnegative integers with all row and column sums equal to $n / 2$, so we can apply Birkhoff's Theorem to write $A=P_{1}+\cdots+P_{n / 2}$ as a sum of $n / 2$ permutation matrices.

Let $v(i, j)=(i-1) n+j$ be the value written in the square in row i, column j. Let b be the sum of the values on the blue squares and r be the sum of the values on the red squares. Then

$$
r+b=\sum_{i, j} v(i, j)=\sum_{i, j}((i-1) n+j)=\frac{n^{4}+n^{2}}{2} .
$$

Note that if $a_{i j}=1$, then exactly one of the permutation matrices P_{k} has a 1 in row i, column j. So $b=\sum_{k=1}^{n / 2} c_{k}$, where c_{k} is the sum of the values $v(i, j)$ in the positions where P_{k} has 1 's. But if $P=\left(p_{i j}\right)$ is a permutation matrix, corresponding to a permutation σ (so $p_{i j}=1$ iff $\sigma(j)=i$), then the sum of the $v(i, j)$ where P has 1's is

$$
\sum_{j=1}^{n} v(\sigma(j), j)=\sum_{j=1}^{n}((\sigma(j)-1) n+j)=\frac{n(n+1)}{2}+\frac{n^{2}(n-1)}{2}=\frac{n^{3}+n}{2}
$$

since σ is a permutation. Thus,

$$
b=\frac{n}{2} \frac{n^{3}+n}{2}=\frac{n^{4}+n^{2}}{4}=\frac{r+b}{2},
$$

showing $b=r$.
(2) Let $V_{1}, \ldots V_{k} \in P$ and check that they have a greatest lower bound and a least upper bound. The intersection $V_{1} \cap \ldots V_{k}$ is a subspace contained in all the V_{i} and containing any subspace which contains all the V_{i}, so the intersection is a greatest lower bound. Similarly, the sum $V_{1}+\cdots+V_{k}=$ $\left\{v_{1}+\cdots+v_{k}: v_{i} \in V_{i}\right\}$ is a least upper bound for the V_{i}. So P is a lattice.

Let $V_{0} \subset V_{1} \cdots \subset V_{k}$ be a maximal chain (with the V_{i} distinct). Then the dimension of V_{i+1} is 1 more than the dimension of V_{i} since otherwise we can make the chain longer (by choosing a basis for V_{i}, extending it to a basis for V_{i+1}, and inserting a subspace which uses just one of the new basis elements). Also, V_{0} is 0 -dimensional and V_{k} is d-dimensional (else we can get a longer chain using $\{0\}$ or the whole space). Thus, $k=d$, showing that the chain has $d+1$ elements and length d (depending on the convention used for length).

As shown on p. 326 of the text, the number of k-subspaces is the Gaussian coefficient

$$
\binom{d}{k}_{p}=\frac{\left(p^{d}-1\right)\left(p^{d-1}-1\right) \ldots\left(p^{d-k+1}-1\right)}{\left(p^{k}-1\right)\left(p^{k-1}-1\right) \ldots(p-1)} .
$$

(3) Let V be the given r-subspace of an n-dimensional space V_{0}, and define $f(U)$ to be the number of k-subspaces S such that $S \cap V=U$ (in particular, $f(U)=0$ unless $U \subseteq V$). Define

$$
h(W)=\sum_{U \supseteq W} f(U) .
$$

Then $h(W)$ counts the number of k-subspaces S with $S \cap V \supseteq W$. So $h(W)=0$ if W is not contained in V or if $\operatorname{dim}(W)>k$. Assume $W \subseteq V$ and $\operatorname{dim}(W)=j \leq k$. Then $h(W)=\binom{n-j}{k-j}_{q}$ (this is a Gaussian coefficient as in the previous problem), by directly counting or since the lattice of all subspaces containing W is isomorphic to the quotient space V_{0} / W. Applying Möbius inversion, we have

$$
f(U)=\sum_{W \supseteq U} \mu(U, W) h(W) .
$$

Taking $U=\{0\}$ and using Theorem 25.1 (iii),

$$
\left.f(\{0\})=\sum_{W}(-1)^{\operatorname{dim}(W)} q^{(\operatorname{dim}(W)}{ }_{2}\right) h(W)=\sum_{j=0}^{\min (r, k)}(-1)^{j} q^{\left(\frac{j}{2}\right)}\binom{r}{j}_{q}\binom{n-j}{k-j}_{q}
$$

is the number of k-subspaces which intersect V trivially.

