
MATH 108, FALL 2002

HOMEWORK 7 SOLUTIONS

(1) Represent the grid coloring as an n by n matrix A = (aij) by putting aij = 1 if the square in
row i, column j is blue, and aij = 0 if that square is red. Then the entries of A are nonnegative
integers with all row and column sums equal to n/2, so we can apply Birkhoff’s Theorem to write
A = P1 + · · · + Pn/2 as a sum of n/2 permutation matrices.

Let v(i, j) = (i − 1)n + j be the value written in the square in row i, column j. Let b be the sum
of the values on the blue squares and r be the sum of the values on the red squares. Then

r + b =
∑

i,j

v(i, j) =
∑

i,j

((i− 1)n + j) =
n4 + n2

2
.

Note that if aij = 1, then exactly one of the permutation matrices Pk has a 1 in row i, column j.

So b =
∑n/2

k=1 ck, where ck is the sum of the values v(i, j) in the positions where Pk has 1’s. But if
P = (pij) is a permutation matrix, corresponding to a permutation σ (so pij = 1 iff σ(j) = i), then
the sum of the v(i, j) where P has 1’s is

n
∑

j=1

v(σ(j), j) =

n
∑

j=1

((σ(j) − 1)n + j) =
n(n + 1)

2
+

n2(n− 1)

2
=

n3 + n

2

since σ is a permutation. Thus,

b =
n

2

n3 + n

2
=

n4 + n2

4
=

r + b

2
,

showing b = r.

(2) Let V1, . . . Vk ∈ P and check that they have a greatest lower bound and a least upper bound.
The intersection V1∩ . . . Vk is a subspace contained in all the Vi and containing any subspace which
contains all the Vi, so the intersection is a greatest lower bound. Similarly, the sum V1 + · · ·+Vk =
{v1 + · · ·+ vk : vi ∈ Vi} is a least upper bound for the Vi. So P is a lattice.

Let V0 ⊂ V1 · · · ⊂ Vk be a maximal chain (with the Vi distinct). Then the dimension of Vi+1 is 1
more than the dimension of Vi since otherwise we can make the chain longer (by choosing a basis
for Vi, extending it to a basis for Vi+1, and inserting a subspace which uses just one of the new
basis elements). Also, V0 is 0-dimensional and Vk is d-dimensional (else we can get a longer chain
using {0} or the whole space). Thus, k = d, showing that the chain has d + 1 elements and length
d (depending on the convention used for length).

As shown on p. 326 of the text, the number of k-subspaces is the Gaussian coefficient

(

d

k

)

p

=
(pd − 1)(pd−1 − 1) . . . (pd−k+1 − 1)

(pk − 1)(pk−1 − 1) . . . (p− 1)
.
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(3) Let V be the given r-subspace of an n-dimensional space V0, and define f(U) to be the number
of k-subspaces S such that S ∩ V = U (in particular, f(U) = 0 unless U ⊆ V ). Define

h(W ) =
∑

U⊇W

f(U).

Then h(W ) counts the number of k-subspaces S with S ∩ V ⊇ W . So h(W ) = 0 if W is not
contained in V or if dim(W ) > k. Assume W ⊆ V and dim(W ) = j ≤ k. Then h(W ) =

(n−j
k−j

)

q

(this is a Gaussian coefficient as in the previous problem), by directly counting or since the lattice of
all subspaces containing W is isomorphic to the quotient space V0/W . Applying Möbius inversion,
we have

f(U) =
∑

W⊇U

µ(U,W )h(W ).

Taking U = {0} and using Theorem 25.1 (iii),

f({0}) =
∑

W

(−1)dim(W )q(
dim(W )

2 )h(W ) =

min(r,k)
∑

j=0

(−1)jq(
j

2)
(

r

j

)

q

(

n− j

k − j

)

q

is the number of k-subspaces which intersect V trivially.
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