MATH 108, FALL 2002

HOMEWORK 6 SOLUTIONS

(1) There are $2^{4}=16$ subsets of $\{1,2,3,4\}$. To see the correspondence with the hypercube, identify a subset S with a 4 -tuple ($a_{1}, a_{2}, a_{3}, a_{4}$) where a_{i} is 1 if $i \in S$ and is 0 otherwise. In the labels below we just write 1234 in place of $\{1,2,3,4\}$, etc.

(2) There are 6 maximal elements (the faces in the usual sense), each of which lies above the 4 edges it contains, each of which lies above 2 minimal elements (vertices). Each of the 8 minimal elements is contained in 3 edges, each of which is contained in 2 maximal elements.

(3) There are $\binom{n}{3}$ ways to select the 3 non-leaves. Now count the number of trees for a particular choice of the 3 non-leaves, which (without loss of generality) we assume are 1,2,3. Recalling that a vertex v of a tree appears $\operatorname{deg}(v)-1$ times in the tree's Prüfer code, we must count the number of sequences $\left(a_{1}, \ldots, a_{n-2}\right)$ with $a_{i} \in\{1,2,3\}$ and where 1,2 , and 3 all appear at least once. Let $S=\{1,2,3\}^{n-2}$ and A_{i} be the number of sequences in S where i does not appear. Then by inclusion-exclusion,

$$
\begin{aligned}
\left|S \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right)\right| & =|S|-\left(\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|\right)+\left(\left|A_{1} \cap A_{2}\right|+\left|A_{1} \cap A_{3}\right|+\left|A_{2} \cap A_{3}\right|\right)-\left|A_{1} \cap A_{2} \cap A_{3}\right| \\
& =3^{n-2}-3 \cdot 2^{n-2}+3 \cdot 1-0 \\
& =3\left(3^{n-3}-2^{n-2}+1\right)
\end{aligned}
$$

Thus, there are $3\binom{n}{3}\left(3^{n-3}-2^{n-2}+1\right)$ labelled trees on the vertices $\{1, \ldots, n\}$ with exactly $n-3$ leaves.
(4) Define a partial order \leq on the set of all pairs $\left(i, a_{i}\right)\left(i \in\left\{1,2, \ldots, n^{2}+1\right\}\right)$ by saying $\left(i, a_{i}\right) \leq$ $\left(j, a_{j}\right)$ iff $i \leq j$ and $a_{i} \leq a_{j}$. (It is easy to check that this relation is reflexive, transitive, and antisymmetric.) Note that a chain of size m in this poset corresponds to an increasing subsequence of length m, since if $\left\{\left(i_{1}, a_{i_{1}}\right), \ldots,\left(i_{m}, a_{i_{m}}\right)\right\}$ is a chain of size m, labeled so that $\left(i_{1}, a_{i_{1}}\right) \leq\left(i_{2}, a_{i_{2}}\right) \leq$ $\cdots \leq\left(i_{m}, a_{i_{m}}\right)$, then $a_{i_{1}}<a_{i_{2}}<\ldots a_{i_{m}}$ with $i_{1}<i_{2}<\cdots<i_{m}$ (the inequalities are strict since $a_{1}, \ldots, a_{n^{2}+1}$ are distinct). Similarly, an antichain of length m corresponds to a decreasing subsequence of length m.

If there is an antichain of size $n+1$, then we are done since this gives a monotone decreasing subsequence of length $n+1$. So assume that all antichains have size at most n. By Dilworth's Theorem, we can partition the poset into n chains C_{1}, \ldots, C_{n} (some of these chains may be empty). Then by the Pigeonhole Principle, some C_{i} has size at least $n+1$, which gives a monotone increasing subsequence of length $n+1$.
(5) Let $S=\{1,2, \ldots, 999\}$ and let A_{i} be the set of elements of S that are divisible by i. An integer has no factor between 1 and 10 iff it has no prime factor between 1 and 10 , so we need to count $S \backslash\left(A_{2} \cup A_{3} \cup A_{5} \cup A_{7}\right)$. Note that if i_{1}, \ldots, i_{k} are distinct primes then $A_{i_{1}} \cap \cdots \cap A_{i_{k}}=A_{i_{1} i_{2} \ldots i_{k}}$. Also, the size of A_{i} is $\lfloor 999 / i\rfloor$. So by inclusion-exclusion the desired number is

$$
|S|-\left(\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{5}\right|+\left|A_{7}\right|\right)+\left(\left|A_{6}\right|+\left|A_{10}\right|+\left|A_{14}\right|+\left|A_{15}\right|+\left|A_{21}\right|+\left|A_{35}\right|\right)-\left(\left|A_{30}\right|+\left|A_{42}\right|+\left|A_{70}\right|+\left|A_{105}\right|\right)+\left|A_{210}\right|=
$$

$$
999-(499+333+199+142)+(166+99+71+66+47+28)-(33+23+14+9)+4=228
$$

(6) Fix $n \geq 1$ and p prime. Let S be the set of all monic polynomials of degree n in $\mathbb{F}_{p}[x]$ and for $i \in \mathbb{F}_{p}$, let A_{i} be the set of all polynomials $f(x)$ in S with $f(i)=0$. We want to count $S \backslash \bigcup_{i=0}^{p-1} A_{i}$. Now use the fact that $f(i)=0$ iff $x-i$ divides $f(x)$. A polynomial $f(x)$ in S is divisible by $x-i$ iff $f(x)=(x-i) g(x)$ where $g(x)$ is monic of degree $n-1$. And $f(x)$ is divisible by $(x-i)(x-j)$ (where $i \neq j$ iff $f(x)=(x-i)(x-j) g(x)$ with $g(x)$ monic of degree $n-2$, etc. (using the fact that $\mathbb{F}_{p}[x]$ has unique factorization; also, $g(x)$ is uniquely determined since if $(x-i)(x-j) g_{1}(x)=(x-i)(x-j) g_{2}(x)$ then $(x-i)(x-j)\left(g_{1}(x)-g_{2}(x)\right)=0$, which implies $g_{1}(x)-g_{2}(x)=0$ since all nonzero elements of \mathbb{F}_{p} have inverses). By inclusion-exclusion, the desired number is

$$
p^{n}-\sum_{j=1}^{\min (p, n)}(-1)^{j+1}\binom{p}{j} p^{n-j}=\sum_{j=2}^{\min (p, n)}(-1)^{j}\binom{p}{j} p^{n-j}
$$

