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HOMEWORK 6 SOLUTIONS

(1) There are 24 = 16 subsets of {1, 2, 3, 4}. To see the correspondence with the hypercube, identify
a subset S with a 4-tuple (a1, a2, a3, a4) where ai is 1 if i ∈ S and is 0 otherwise. In the labels
below we just write 1234 in place of {1, 2, 3, 4}, etc.
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(2) There are 6 maximal elements (the faces in the usual sense), each of which lies above the 4
edges it contains, each of which lies above 2 minimal elements (vertices). Each of the 8 minimal
elements is contained in 3 edges, each of which is contained in 2 maximal elements.

(3) There are
(

n
3

)

ways to select the 3 non-leaves. Now count the number of trees for a particular
choice of the 3 non-leaves, which (without loss of generality) we assume are 1,2,3. Recalling that
a vertex v of a tree appears deg(v) − 1 times in the tree’s Prüfer code, we must count the number
of sequences (a1, . . . , an−2) with ai ∈ {1, 2, 3} and where 1, 2, and 3 all appear at least once. Let
S = {1, 2, 3}n−2 and Ai be the number of sequences in S where i does not appear. Then by
inclusion-exclusion,

|S \ (A1 ∪A2 ∪A3)| = |S| − (|A1|+ |A2| + |A3|) + (|A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3|) − |A1 ∩A2 ∩A3|

= 3n−2 − 3 · 2n−2 + 3 · 1− 0

= 3(3n−3 − 2n−2 + 1)
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Thus, there are 3
(

n
3

)

(3n−3 − 2n−2 + 1) labelled trees on the vertices {1, . . . , n} with exactly n − 3
leaves.

(4) Define a partial order ≤ on the set of all pairs (i, ai) (i ∈ {1, 2, . . . , n2 + 1}) by saying (i, ai) ≤
(j, aj) iff i ≤ j and ai ≤ aj . (It is easy to check that this relation is reflexive, transitive, and
antisymmetric.) Note that a chain of size m in this poset corresponds to an increasing subsequence
of length m, since if {(i1, ai1), . . . , (im, aim)} is a chain of size m, labeled so that (i1, ai1) ≤ (i2, ai2) ≤
· · · ≤ (im, aim), then ai1 < ai2 < . . . aim with i1 < i2 < · · · < im (the inequalities are strict
since a1, . . . , an2+1 are distinct). Similarly, an antichain of length m corresponds to a decreasing
subsequence of length m.

If there is an antichain of size n + 1, then we are done since this gives a monotone decreasing
subsequence of length n + 1. So assume that all antichains have size at most n. By Dilworth’s
Theorem, we can partition the poset into n chains C1, . . . , Cn (some of these chains may be empty).
Then by the Pigeonhole Principle, some Ci has size at least n+1, which gives a monotone increasing
subsequence of length n + 1.

(5) Let S = {1, 2, . . . , 999} and let Ai be the set of elements of S that are divisible by i. An integer
has no factor between 1 and 10 iff it has no prime factor between 1 and 10, so we need to count
S \ (A2 ∪A3 ∪A5 ∪A7). Note that if i1, . . . , ik are distinct primes then Ai1 ∩ · · · ∩Aik = Ai1i2...ik .
Also, the size of Ai is b999/ic. So by inclusion-exclusion the desired number is

|S|−(|A2|+|A3|+|A5|+|A7|)+(|A6|+|A10|+|A14|+|A15|+|A21|+|A35|)−(|A30|+|A42|+|A70|+|A105|)+|A210| =

999 − (499 + 333 + 199 + 142) + (166 + 99 + 71 + 66 + 47 + 28) − (33 + 23 + 14 + 9) + 4 = 228

(6) Fix n ≥ 1 and p prime. Let S be the set of all monic polynomials of degree n in Fp[x] and for

i ∈ Fp, let Ai be the set of all polynomials f(x) in S with f(i) = 0. We want to count S \
⋃p−1

i=0 Ai.
Now use the fact that f(i) = 0 iff x− i divides f(x). A polynomial f(x) in S is divisible by x− i iff
f(x) = (x−i)g(x) where g(x) is monic of degree n−1. And f(x) is divisible by (x−i)(x−j) (where
i 6= j iff f(x) = (x−i)(x−j)g(x) with g(x) monic of degree n−2, etc. (using the fact that Fp[x] has
unique factorization; also, g(x) is uniquely determined since if (x−i)(x−j)g1(x) = (x−i)(x−j)g2(x)
then (x − i)(x − j)(g1(x) − g2(x)) = 0, which implies g1(x) − g2(x) = 0 since all nonzero elements
of Fp have inverses). By inclusion-exclusion, the desired number is

pn −

min(p,n)
∑

j=1

(−1)j+1

(

p

j

)

pn−j =

min(p,n)
∑

j=2
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(

p
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pn−j.
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