MATH 108, FALL 2002

HOMEWORK 6 SOLUTIONS

(1) There are $2^4 = 16$ subsets of $\{1, 2, 3, 4\}$. To see the correspondence with the hypercube, identify a subset S with a 4-tuple (a_1, a_2, a_3, a_4) where a_i is 1 if $i \in S$ and is 0 otherwise. In the labels below we just write 1234 in place of $\{1, 2, 3, 4\}$, etc.

(2) There are 6 maximal elements (the faces in the usual sense), each of which lies above the 4 edges it contains, each of which lies above 2 minimal elements (vertices). Each of the 8 minimal elements is contained in 3 edges, each of which is contained in 2 maximal elements.

(3) There are $\binom{n}{3}$ ways to select the 3 non-leaves. Now count the number of trees for a particular choice of the 3 non-leaves, which (without loss of generality) we assume are 1,2,3. Recalling that a vertex v of a tree appears $\deg(v) - 1$ times in the tree's Prüfer code, we must count the number of sequences (a_1, \ldots, a_{n-2}) with $a_i \in \{1, 2, 3\}$ and where 1, 2, and 3 all appear at least once. Let $S = \{1, 2, 3\}^{n-2}$ and A_i be the number of sequences in S where i does not appear. Then by inclusion-exclusion,

$$|S \setminus (A_1 \cup A_2 \cup A_3)| = |S| - (|A_1| + |A_2| + |A_3|) + (|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|) - |A_1 \cap A_2 \cap A_3|$$

= $3^{n-2} - 3 \cdot 2^{n-2} + 3 \cdot 1 - 0$
= $3(3^{n-3} - 2^{n-2} + 1)$

Thus, there are $3\binom{n}{3}(3^{n-3}-2^{n-2}+1)$ labelled trees on the vertices $\{1,\ldots,n\}$ with exactly n-3 leaves.

(4) Define a partial order \leq on the set of all pairs (i, a_i) $(i \in \{1, 2, ..., n^2 + 1\})$ by saying $(i, a_i) \leq (j, a_j)$ iff $i \leq j$ and $a_i \leq a_j$. (It is easy to check that this relation is reflexive, transitive, and antisymmetric.) Note that a chain of size m in this poset corresponds to an increasing subsequence of length m, since if $\{(i_1, a_{i_1}), \ldots, (i_m, a_{i_m})\}$ is a chain of size m, labeled so that $(i_1, a_{i_1}) \leq (i_2, a_{i_2}) \leq \cdots \leq (i_m, a_{i_m})$, then $a_{i_1} < a_{i_2} < \ldots a_{i_m}$ with $i_1 < i_2 < \cdots < i_m$ (the inequalities are strict since a_1, \ldots, a_{n^2+1} are distinct). Similarly, an antichain of length m corresponds to a decreasing subsequence of length m.

If there is an antichain of size n + 1, then we are done since this gives a monotone decreasing subsequence of length n + 1. So assume that all antichains have size at most n. By Dilworth's Theorem, we can partition the poset into n chains C_1, \ldots, C_n (some of these chains may be empty). Then by the Pigeonhole Principle, some C_i has size at least n+1, which gives a monotone increasing subsequence of length n + 1.

(5) Let $S = \{1, 2, ..., 999\}$ and let A_i be the set of elements of S that are divisible by i. An integer has no factor between 1 and 10 iff it has no prime factor between 1 and 10, so we need to count $S \setminus (A_2 \cup A_3 \cup A_5 \cup A_7)$. Note that if $i_1, ..., i_k$ are *distinct* primes then $A_{i_1} \cap \cdots \cap A_{i_k} = A_{i_1 i_2 ... i_k}$. Also, the size of A_i is $\lfloor 999/i \rfloor$. So by inclusion-exclusion the desired number is

$$|S| - (|A_2| + |A_3| + |A_5| + |A_7|) + (|A_6| + |A_{10}| + |A_{14}| + |A_{15}| + |A_{21}| + |A_{35}|) - (|A_{30}| + |A_{42}| + |A_{70}| + |A_{105}|) + |A_{210}| = 999 - (499 + 333 + 199 + 142) + (166 + 99 + 71 + 66 + 47 + 28) - (33 + 23 + 14 + 9) + 4 = 228$$

(6) Fix $n \ge 1$ and p prime. Let S be the set of all monic polynomials of degree n in $\mathbb{F}_p[x]$ and for $i \in \mathbb{F}_p$, let A_i be the set of all polynomials f(x) in S with f(i) = 0. We want to count $S \setminus \bigcup_{i=0}^{p-1} A_i$. Now use the fact that f(i) = 0 iff x - i divides f(x). A polynomial f(x) in S is divisible by x - i iff f(x) = (x-i)g(x) where g(x) is monic of degree n-1. And f(x) is divisible by (x-i)(x-j) (where $i \ne j$ iff f(x) = (x-i)(x-j)g(x) with g(x) monic of degree n-2, etc. (using the fact that $\mathbb{F}_p[x]$ has unique factorization; also, g(x) is uniquely determined since if $(x-i)(x-j)g_1(x) = (x-i)(x-j)g_2(x)$ then $(x-i)(x-j)(g_1(x) - g_2(x)) = 0$, which implies $g_1(x) - g_2(x) = 0$ since all nonzero elements of \mathbb{F}_p have inverses). By inclusion-exclusion, the desired number is

$$p^{n} - \sum_{j=1}^{\min(p,n)} (-1)^{j+1} \binom{p}{j} p^{n-j} = \sum_{j=2}^{\min(p,n)} (-1)^{j} \binom{p}{j} p^{n-j}.$$