MATH 108, FALL 2002

HOMEWORK 5 SOLUTIONS

(1) Let X be a set of 4 points in \mathbb{F}_{3}^{2} not containing any lines. First consider the case where X contains $(0,0)$, say with $X=\left\{(0, x, y, z\}\right.$. The points x, y, z are linearly dependent since \mathbb{F}_{3}^{2} is a 2 -dimensional vector space. So there is a nontrivial linear combination $\alpha x+\beta y+\gamma z=(0,0)$ with $\alpha, \beta, \gamma \in\{-1,0,1\}($ working $\bmod 3)$. None of the coefficients can be 0 , else X would contain a line (e.g., if $\alpha=0$ then X contains the line $\{0, y,-y\}$). Similarly, the coefficients cannot be all 1's or all -1 's. So rearranging $\alpha x+\beta y+\gamma z=0$, we can write one of x, y, z is the sum of the other two. Without loss of generality, assume $z=x+y$.

Then we can take $b=0$ and $A=(x y)$ (treating points as column vectors) since $0 \mapsto 0,(1,0) \mapsto$ $x,(0,1) \mapsto y$, and $(1,1) \mapsto x+y=z$. The matrix A is invertible since x and y are linearly independent (since X does not contain a line).

If X does not contain $(0,0)$, then we can translate the elements of X. Specifically, let $X=$ $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$. Let $b=p_{1}$ and let A be the matrix obtained from applying the previous case to $X^{\prime}=\left\{0, p_{2}-p_{1}, p_{3}-p_{1}, p_{4}-p_{1}\right\}$ (which also does not contain a line). Then the affine transformation $v \mapsto A v+b$ maps $\{(0,0),(1,0),(0,1),(1,1)\}$ onto X.
(2) Let $\left(a_{1}, \ldots, a_{10}\right)$ be an ISBN codeword. Here $a_{i} \in\{0,1, \ldots, 9\}$ for $i<10$, and $a_{10} \in$ $\{0,1, \ldots, 10\}$ is chosen so that

$$
10 a_{1}+9 a_{2}+\ldots+2 a_{9}+a_{10}=\sum_{i=1}^{10}(11-i) a_{i} \equiv 0(\bmod 11) .
$$

Equivalently, the check condition is $\sum_{i=1}^{10} i a_{i} \equiv 0(\bmod 11)$.
Suppose that there is exactly one error, at the j th position, which gives the sequence (b_{1}, \ldots, b_{10}) where $b_{j} \neq a_{j}$ and $b_{i}=a_{i}$ for $i \neq j$. Then

$$
\sum_{i=1}^{10} i b_{i} \equiv \sum_{i=1}^{10} i b_{i}-\sum_{i=1}^{10} i a_{i}=\sum_{i=1}^{10} i\left(b_{i}-a_{i}\right)=j\left(b_{j}-a_{j}\right),
$$

which is nonzero $(\bmod 11)$ since j and $b_{j}-a_{j}$ are nonzero $(\bmod 11)$. (We are using the fact that 11 is prime and that if $a b \equiv 0(\bmod p)$ with p prime, then $a \equiv 0(\bmod p)$ or $b \equiv 0(\bmod p)$.) Thus, the error is detected.

Now suppose instead that two adjacent numbers are switched, say a_{j} and a_{j+1}. This does not affect the codeword if $a_{j}=a_{j+1}$, so assume $a_{j} \neq a_{j+1}$ and let $\left(b_{1}, \ldots, b_{10}\right)$ be the resulting word. Then
$\sum_{i=1}^{10} i b_{i} \equiv \sum_{i=1}^{10} i\left(b_{i}-a_{i}\right)=j\left(b_{j}-a_{j}\right)+(j+1)\left(b_{j+1}-a_{j+1}\right)=j\left(a_{j+1}-a_{j}\right)+(j+1)\left(a_{j}-a_{j+1}\right)=a_{j}-a_{j+1}$,
which is nonzero $(\bmod 11)$. So the switch is detected.
(3) We can use the repetition code $C=\{(0,0,0,0),(1,1,1,1),(2,2,2,2)\}$. This has weight 4 (in fact both nonzero codewords here have weight 4), with 3 codewords.
(4) Let C be the code determined by the 4 by 13 parity check matrix

$$
H=\left(\begin{array}{lllllllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

So C is the set of all row vectors $x \in \mathbb{F}_{3}^{13}$ such that $H x^{T}=0$. We chose H so that any 2 columns are linearly independent over \mathbb{F}_{3} (it is easy to see that the H above has this property since the columns are nonzero, distinct, and none is the negative of another). On the other hand, it is possible to find 3 linearly dependent columns in H, such as the 9 th, 10 th, and 11 th columns. This shows that C has weight 3 , since for any row vector $x \in \mathbb{F}_{3}^{13}, H x^{T}$ is a linear combination of the columns of H. There are 3^{9} codewords because the dimension of the nullspace of H is $13-\operatorname{rank}(H)=13-4=9$.

