MATH 108, FALL 2002

HOMEWORK 4 SOLUTIONS

(1) (i) Let G be a finite bipartite graph which is regular of degree d, with vertex set $X \cup Y$ such that every edge has one endpoint in X and the other in Y. Note that

$$d|X| = \sum_{x \in X} \deg(x) = (\text{number of edges in the graph}) = \sum_{y \in Y} \deg(y) = d|Y|,$$

so X and Y have the same size.

Let $A \subseteq X$, and check the condition for Hall's Marriage Theorem. Every edge with an endpoint in A also has an endpoint in $\Gamma(A)$. So the number of edges with an endpoint in A is less than or equal to the number of edges with an endpoint in $\Gamma(A)$. This gives $d|A| \leq d|\Gamma(A)|$, so $|\Gamma(A)| \geq |A|$. By Hall's Marriage Theorem, there is a complete matching M of X into Y. This M is a perfect matching of G since X and Y have the same size, so every vertex in X is matched with a unique vertex in Y and vice versa.

(ii) Note that if a finite graph has a perfect matching, then the number of vertices must be even. For a trivalent simple graph G = (V, E) with *n* vertices, 3n = 2|E| so *n* is even. This rules out giving an example where no perfect matching exists due to an odd number of vertices. However, we can find a trivalent simple graph where a perfect matching would give rise to a perfect matching in a subgraph with an odd number of vertices:

The graph drawn above does not have a perfect matching. To see this, suppose there is a perfect matching. Then exactly one of the 3 edges coming out from the center vertex is used in the matching. If we delete the other 2 edges, the graph is broken into 3 connected components. The perfect matching induces perfect matchings on the components, but this is impossible since 2 of the components have odd numbers of vertices.

(iii) Assume $s \ge t$ (this is equivalent to $|X| \le |Y|$ since s|X| = t|Y|). By the same method as in (i), we have $s|A| \le t|\Gamma(A)|$ for any $A \subseteq X$. Then $|\Gamma(A)| \ge \frac{s}{t}|A| \ge |A|$, so Hall's Marriage Theorem yields a complete matching of X into Y.

(2) It suffices to show that if we have five points p_1, \ldots, p_5 in \mathbb{P}_2^2 , then at least three are collinear. For each pair of points p_i, p_j (with i < j), there is a unique line L(i, j) through p_i and p_j . These lines are not all distinct since there are $\binom{5}{2} = 10$ pairs but only 7 lines in \mathbb{P}_3^2 . So L(i, j) = L(k, l) for some i, j, k, l with $\{i, j\} \neq \{k, l\}$. But then the points p_i, p_j, p_k, p_l are collinear (at least 3 of these points are distinct since $\{i, j\} \neq \{k, l\}$). This means that we have three collinear points, which contradicts p_1, \ldots, p_5 being a cap.

(3) The 13 points in \mathbb{P}^2_3 are the lines through the origin containing the following points:

- a) (1,0,0)
- b) (0,1,0)
- c) (1,1,0)
- d) (1,2,0)
- e) (0,0,1)
- f) (1,0,1)
- g) (2,0,1)
- h) (0,1,1)
- i) (1,1,1)
- j) (2,1,1)
- k) (0,2,1)
- l) (1,2,1)
- m) (2,2,1)

The lines are: $\{a, b, c, d\}, \{a, e, h, k\}, \{a, f, i, l\}, \{a, g, j, m\}, \{b, e, f, g\}, \{b, h, i, j\}, \{b, k, l, m\}, \{c, e, i, m\}, \{c, f, j, k\}, \{c, g, h, l\}, \{d, e, j, l\}, \{d, f, h, m\}, \{d, g, i, k\}.$

Suppose that p_1, \ldots, p_5 are 5 points in \mathbb{P}_3^2 . Since multiplying by an invertible 3×3 matrix takes lines in \mathbb{F}_3^3 to lines, and two-dimensional subspaces to two-dimensional subspaces, and p_1, p_2, p_3 are linearly independent vectors (since they do not lie on the same projective line), we can multiply by $(p_1p_2p_3)^{-1}$ to get a new configuration with $p'_1 = e_1, p'_2 = e_2, p'_3 = e_3$. If p'_1, \ldots, p'_5 is a cap, the last two points must be two of $\{(1, 1, 1), (1, 2, 1), (1, 1, 2), (1, 2, 2)\}$. However for each of the six ways to choose two of these points one of p'_1, p'_2 , or p'_3 lies on the same line as the two points, so the five points do not form a cap. Thus the original five points do not form a cap.

(4) We can form a cap in \mathbb{P}_3^3 by taking a cap in \mathbb{F}_3^3 and appending the last coordinate equal to one to get points in \mathbb{F}_3^4 which correspond to different points in \mathbb{P}_3^3 with no three collinear. For example: $\{(0,0,0,1), (2,0,0,1), (0,2,0,1), (2,2,0,1), (1,1,1,1), (1,0,2,1), (0,1,2,1), (2,1,2,1), (1,2,2,1)\}$.

A cap with ten points is given by $\{(1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1), (2, 1, 1, 1), (1, 2, 1, 1), (0, 0, 1, 2), (2, 0, 1, 2), (0, 2, 1, 2), (2, 2, 1, 2)\}.$