MATH 108, FALL 2002

HOMEWORK 4 SOLUTIONS

(1) (i) Let G be a finite bipartite graph which is regular of degree d, with vertex set X UY such
that every edge has one endpoint in X and the other in Y. Note that

d|X| = Z deg(z) = (number of edges in the graph) = Z deg(y) = d|Y|,
zeX yey

so X and Y have the same size.

Let A C X, and check the condition for Hall’s Marriage Theorem. Every edge with an endpoint
in A also has an endpoint in I'(4). So the number of edges with an endpoint in A is less than or
equal to the number of edges with an endpoint in I'(A). This gives d|A| < d|T'(A)], so |[T'(A4)| > |A].
By Hall’s Marriage Theorem, there is a complete matching M of X into Y. This M is a perfect
matching of G since X and Y have the same size, so every vertex in X is matched with a unique
vertex in Y and vice versa.

(ii) Note that if a finite graph has a perfect matching, then the number of vertices must be even.
For a trivalent simple graph G = (V, E) with n vertices, 3n = 2|E| so n is even. This rules out
giving an example where no perfect matching exists due to an odd number of vertices. However,
we can find a trivalent simple graph where a perfect matching would give rise to a perfect matching
in a subgraph with an odd number of vertices:

The graph drawn above does not have a perfect matching. To see this, suppose there is a perfect
matching. Then exactly one of the 3 edges coming out from the center vertex is used in the
matching. If we delete the other 2 edges, the graph is broken into 3 connected components. The
perfect matching induces perfect matchings on the components, but this is impossible since 2 of
the components have odd numbers of vertices.

(iii) Assume s > t (this is equivalent to |X| < |Y| since s|X| = ¢|Y|). By the same method as in
(i), we have s|A| < t|['(A)| for any A € X. Then [['(A)| > $|A| > |A|, so Hall’s Marriage Theorem
yields a complete matching of X into Y.



(2) It suffices to show that if we have five points pi,...,ps in P4, then at least three are collinear.
For each pair of points p;,p; (with ¢ < j), there is a unique line L(%,j) through p; and p;. These
lines are not all distinct since there are (2) = 10 pairs but only 7 lines in P%. So L(i,j) = L(k,!) for
some 1,7, k,l with {4,5} # {k,(}. But then the points p;, p;, pk, p; are collinear (at least 3 of these
points are distinct since {i,5} # {k,l}). This means that we have three collinear points, which
contradicts p1,...,ps being a cap.

(3) The 13 points in P2 are the lines through the origin containing the following points:

a) (1,0,0)
b) (0,1,0)
c) (1,1,0)
d) (1,2,0)
e) (0,0,1)
f) (1,0,1)
g) (2,0,1)
h) (0,1,1)
i) (1,1,1)
i) (2,L1)
k) (0,2,1)
) (1,2,1)
m) (2,2,1)

The ]'ineS are: {a'7 b7 C? d}’ {a7 67 h7 k}’ {a'7 f?IL.? l}? {a'7g7j7 m}7 {b7 e? f7 9}7 {b7 h7i7j}7 {b7 k7l7m}7
{C’ e”i’m}’ {C’ f’j’ k}’ {c’g’ h’l}’{d’ e’j’ l}’ {d’ f’ h’m}’{d’g”i’ k}'

Suppose that pi,...,ps are b points in IP’%. Since multiplying by an invertible 3 x 3 matrix takes
lines in IE‘; to lines, and two-dimensional subspaces to two-dimensional subspaces, and p1, ps, p3 are
linearly independent vectors (since they do not lie on the same projective line), we can multiply by
(p1p2ps) ! to get a new configuration with p| = eq, ph = ea, py = e3. If p,...,pk is a cap, the last
two points must be two of {(1,1,1),(1,2,1),(1,1,2),(1,2,2)}. However for each of the six ways to
choose two of these points one of p!,ph, or p4 lies on the same line as the two points, so the five
points do not form a cap. Thus the original five points do not form a cap.

(4) We can form a cap in P% by taking a cap in Fg and appending the last coordinate equal to one
to get points in F3 which correspond to different points in P3 with no three collinear. For example:
{(0,0,0,1),(2,0,0,1),(0,2,0,1),(2,2,0,1),(1,1,1,1),(1,0,2,1),(0,1,2,1),(2,1,2,1),(1,2,2,1) }.

A cap with ten points is given by {(1,1,1,0),(1,1,0,1),(1,0,1,1),(0,1,1,1),(2,1,1,1),(1,2,1, 1),
(0,0,1,2),(2,0,1,2),(0,2,1,2),(2,2,1,2) }.



