
MATH 108, FALL 2002

HOMEWORK 4 SOLUTIONS

(1) (i) Let G be a �nite bipartite graph which is regular of degree d, with vertex set X [ Y such

that every edge has one endpoint in X and the other in Y . Note that

djXj =
X

x2X

deg(x) = (number of edges in the graph) =
X

y2Y

deg(y) = djY j;

so X and Y have the same size.

Let A � X, and check the condition for Hall's Marriage Theorem. Every edge with an endpoint

in A also has an endpoint in �(A). So the number of edges with an endpoint in A is less than or

equal to the number of edges with an endpoint in �(A). This gives djAj � dj�(A)j, so j�(A)j � jAj.
By Hall's Marriage Theorem, there is a complete matching M of X into Y . This M is a perfect
matching of G since X and Y have the same size, so every vertex in X is matched with a unique

vertex in Y and vice versa.

(ii) Note that if a �nite graph has a perfect matching, then the number of vertices must be even.

For a trivalent simple graph G = (V;E) with n vertices, 3n = 2jEj so n is even. This rules out

giving an example where no perfect matching exists due to an odd number of vertices. However,

we can �nd a trivalent simple graph where a perfect matching would give rise to a perfect matching

in a subgraph with an odd number of vertices:

The graph drawn above does not have a perfect matching. To see this, suppose there is a perfect

matching. Then exactly one of the 3 edges coming out from the center vertex is used in the
matching. If we delete the other 2 edges, the graph is broken into 3 connected components. The

perfect matching induces perfect matchings on the components, but this is impossible since 2 of

the components have odd numbers of vertices.

(iii) Assume s � t (this is equivalent to jXj � jY j since sjXj = tjY j). By the same method as in

(i), we have sjAj � tj�(A)j for any A � X. Then j�(A)j � s
t
jAj � jAj, so Hall's Marriage Theorem

yields a complete matching of X into Y .
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(2) It suÆces to show that if we have �ve points p1; : : : ; p5 in P
2

2
, then at least three are collinear.

For each pair of points pi; pj (with i < j), there is a unique line L(i; j) through pi and pj. These

lines are not all distinct since there are
�
5

2

�
= 10 pairs but only 7 lines in P

2

3
. So L(i; j) = L(k; l) for

some i; j; k; l with fi; jg 6= fk; lg. But then the points pi; pj ; pk; pl are collinear (at least 3 of these

points are distinct since fi; jg 6= fk; lg). This means that we have three collinear points, which

contradicts p1; : : : ; p5 being a cap.

(3) The 13 points in P
2
3
are the lines through the origin containing the following points:

a) (1,0,0)

b) (0,1,0)

c) (1,1,0)

d) (1,2,0)

e) (0,0,1)

f) (1,0,1)

g) (2,0,1)

h) (0,1,1)

i) (1,1,1)

j) (2,1,1)

k) (0,2,1)

l) (1,2,1)

m) (2,2,1)

The lines are: fa; b; c; dg; fa; e; h; kg; fa; f; i; lg; fa; g; j;mg; fb; e; f; gg; fb; h; i; jg; fb; k; l;mg;
fc; e; i;mg; fc; f; j; kg; fc; g; h; lg; fd; e; j; lg; fd; f; h;mg; fd; g; i; kg.

Suppose that p1; : : : ; p5 are 5 points in P
2

3
. Since multiplying by an invertible 3 � 3 matrix takes

lines in F
3

3
to lines, and two-dimensional subspaces to two-dimensional subspaces, and p1; p2; p3 are

linearly independent vectors (since they do not lie on the same projective line), we can multiply by

(p1p2p3)
�1 to get a new con�guration with p0

1
= e1, p

0

2
= e2, p

0

3
= e3. If p

0

1
; : : : ; p0

5
is a cap, the last

two points must be two of f(1; 1; 1); (1; 2; 1); (1; 1; 2); (1; 2; 2)g. However for each of the six ways to

choose two of these points one of p0
1
; p0

2
, or p0

3
lies on the same line as the two points, so the �ve

points do not form a cap. Thus the original �ve points do not form a cap.

(4) We can form a cap in P
3
3
by taking a cap in F

3
3
and appending the last coordinate equal to one

to get points in F
4
3
which correspond to di�erent points in P

3
3
with no three collinear. For example:

f(0; 0; 0; 1); (2; 0; 0; 1); (0; 2; 0; 1); (2; 2; 0; 1); (1; 1; 1; 1); (1; 0; 2; 1); (0; 1; 2; 1); (2; 1; 2; 1); (1; 2; 2; 1)g.

A cap with ten points is given by f(1; 1; 1; 0); (1; 1; 0; 1); (1; 0; 1; 1); (0; 1; 1; 1); (2; 1; 1; 1); (1; 2; 1; 1);
(0; 0; 1; 2); (2; 0; 1; 2); (0; 2; 1; 2); (2; 2; 1; 2)g.
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