MATH 108, FALL 2002

HOMEWORK 4 SOLUTIONS

(1) (i) Let G be a finite bipartite graph which is regular of degree d, with vertex set $X \cup Y$ such that every edge has one endpoint in X and the other in Y. Note that

$$
d|X|=\sum_{x \in X} \operatorname{deg}(x)=(\text { number of edges in the graph })=\sum_{y \in Y} \operatorname{deg}(y)=d|Y|,
$$

so X and Y have the same size.
Let $A \subseteq X$, and check the condition for Hall's Marriage Theorem. Every edge with an endpoint in A also has an endpoint in $\Gamma(A)$. So the number of edges with an endpoint in A is less than or equal to the number of edges with an endpoint in $\Gamma(A)$. This gives $d|A| \leq d|\Gamma(A)|$, so $|\Gamma(A)| \geq|A|$. By Hall's Marriage Theorem, there is a complete matching M of X into Y. This M is a perfect matching of G since X and Y have the same size, so every vertex in X is matched with a unique vertex in Y and vice versa.
(ii) Note that if a finite graph has a perfect matching, then the number of vertices must be even. For a trivalent simple graph $G=(V, E)$ with n vertices, $3 n=2|E|$ so n is even. This rules out giving an example where no perfect matching exists due to an odd number of vertices. However, we can find a trivalent simple graph where a perfect matching would give rise to a perfect matching in a subgraph with an odd number of vertices:

The graph drawn above does not have a perfect matching. To see this, suppose there is a perfect matching. Then exactly one of the 3 edges coming out from the center vertex is used in the matching. If we delete the other 2 edges, the graph is broken into 3 connected components. The perfect matching induces perfect matchings on the components, but this is impossible since 2 of the components have odd numbers of vertices.
(iii) Assume $s \geq t$ (this is equivalent to $|X| \leq|Y|$ since $s|X|=t|Y|$). By the same method as in (i), we have $s|A| \leq t|\Gamma(A)|$ for any $A \subseteq X$. Then $|\Gamma(A)| \geq \frac{s}{t}|A| \geq|A|$, so Hall's Marriage Theorem yields a complete matching of X into Y.
(2) It suffices to show that if we have five points p_{1}, \ldots, p_{5} in \mathbb{P}_{2}^{2}, then at least three are collinear. For each pair of points p_{i}, p_{j} (with $i<j$), there is a unique line $L(i, j)$ through p_{i} and p_{j}. These lines are not all distinct since there are $\binom{5}{2}=10$ pairs but only 7 lines in \mathbb{P}_{3}^{2}. So $L(i, j)=L(k, l)$ for some i, j, k, l with $\{i, j\} \neq\{k, l\}$. But then the points $p_{i}, p_{j}, p_{k}, p_{l}$ are collinear (at least 3 of these points are distinct since $\{i, j\} \neq\{k, l\})$. This means that we have three collinear points, which contradicts p_{1}, \ldots, p_{5} being a cap.
(3) The 13 points in \mathbb{P}_{3}^{2} are the lines through the origin containing the following points:
a) $(1,0,0)$
b) $(0,1,0)$
c) $(1,1,0)$
d) $(1,2,0)$
e) $(0,0,1)$
f) $(1,0,1)$
g) $(2,0,1)$
h) $(0,1,1)$
i) $(1,1,1)$
j) $(2,1,1)$
k) $(0,2,1)$

1) $(1,2,1)$
m) $(2,2,1)$

The lines are: $\{a, b, c, d\},\{a, e, h, k\},\{a, f, i, l\},\{a, g, j, m\},\{b, e, f, g\},\{b, h, i, j\},\{b, k, l, m\}$, $\{c, e, i, m\},\{c, f, j, k\},\{c, g, h, l\},\{d, e, j, l\},\{d, f, h, m\},\{d, g, i, k\}$.

Suppose that p_{1}, \ldots, p_{5} are 5 points in \mathbb{P}_{3}^{2}. Since multiplying by an invertible 3×3 matrix takes lines in \mathbb{F}_{3}^{3} to lines, and two-dimensional subspaces to two-dimensional subspaces, and p_{1}, p_{2}, p_{3} are linearly independent vectors (since they do not lie on the same projective line), we can multiply by $\left(p_{1} p_{2} p_{3}\right)^{-1}$ to get a new configuration with $p_{1}^{\prime}=e_{1}, p_{2}^{\prime}=e_{2}, p_{3}^{\prime}=e_{3}$. If $p_{1}^{\prime}, \ldots, p_{5}^{\prime}$ is a cap, the last two points must be two of $\{(1,1,1),(1,2,1),(1,1,2),(1,2,2)\}$. However for each of the six ways to choose two of these points one of $p_{1}^{\prime}, p_{2}^{\prime}$, or p_{3}^{\prime} lies on the same line as the two points, so the five points do not form a cap. Thus the original five points do not form a cap.
(4) We can form a cap in \mathbb{P}_{3}^{3} by taking a cap in \mathbb{F}_{3}^{3} and appending the last coordinate equal to one to get points in \mathbb{F}_{3}^{4} which correspond to different points in \mathbb{P}_{3}^{3} with no three collinear. For example: $\{(0,0,0,1),(2,0,0,1),(0,2,0,1),(2,2,0,1),(1,1,1,1),(1,0,2,1),(0,1,2,1),(2,1,2,1),(1,2,2,1)\}$.

A cap with ten points is given by $\{(1,1,1,0),(1,1,0,1),(1,0,1,1),(0,1,1,1),(2,1,1,1),(1,2,1,1)$, $(0,0,1,2),(2,0,1,2),(0,2,1,2),(2,2,1,2)\}$.

