MATH 108, FALL 2002

HOMEWORK 2 SOLUTIONS

(1) Recall that vertex v appears $\operatorname{deg}(v)-1$ times in the Prüfer code of T. So T has the desired degrees iff its Prüfer code is some permutation of $(2,2,3,3,5)$. Thus, there are $\frac{5!}{2!2!}=30$ such trees.
(2) We will show by induction that every T_{k} can be extended to a cheapest spanning tree (i.e., that T_{k} is a subgraph of some cheapest spanning tree). It follows that T_{n} is a cheapest spanning tree since T_{n} is a subgraph of a cheapest spanning tree T, and then $T_{n}=T$ because T_{n} is already a spanning tree.

For $k=1, T_{1}$ can be extended to a cheapest spanning tree since T_{1} is just one vertex with no edges, so it is a subgraph of any cheapest spanning tree.

Suppose that T_{k} can be extended to a cheapest spanning tree C, and show that T_{k+1} can also be extended to a cheapest spanning tree. Let e be the new edge added to T_{k} to obtain T_{k+1}. If e is already an edge of C then we are done. So assume e is not an edge of C.

Add the edge e into C; this introduces a simple closed path. Since e goes from a vertex in T_{k} to a vertex not in T_{k}, this closed path must contain an edge e^{\prime} from a vertex not in T_{k} back into T_{k}. By the description of the algorithm, we have $c(e) \leq c\left(e^{\prime}\right)$. So the tree C^{\prime} obtained from C by replacing e^{\prime} with e is a cheapest spanning tree containing T_{k+1} as a subgraph.

By induction, T_{n} can be extended to a cheapest spanning tree. Thus, T_{n} is a cheapest spanning tree.
(3) Let T be a path-graph with n vertices. Without loss of generality, we can assume the edges of T are $\{1,2\},\{2,3\}, \ldots,\{n-1, n\}$. Label vertex 1 as 1 , vertex 2 as n, vertex 3 as 2 , vertex 4 as $n-1$, etc. That is, vertex $2 j-1$ is labeled as $j(1 \leq j \leq\lceil n / 2\rceil)$ and vertex $2 j$ is labeled as $n-j+1$ $(1 \leq j \leq\lfloor n / 2\rfloor)$.

The differences in labels across edges are then $n-1, n-2, \ldots, 1$ in absolute value, so the labeling is graceful.
(4) Let n be the number of vertices in G. By Problem 1C, G has $n-1$ edges. There are $n-(m-1)$ monovalent vertices, so (1.1) gives

$$
2(n-1)=n-(m-1)+\sum_{i=2}^{m} i
$$

Solving for n, we see that

$$
n=\frac{m^{2}-m}{2}+2 .
$$

(5) As suggested in the book's hint, let us first check that given such a graph G, there is a graph G^{\prime} with the same number of vertices of each degree, and such that the vertex of degree m has edges to the vertices of degrees $2, \ldots, m$.

Let G be such a graph and let v_{m} be its vertex of degree m. Suppose there is a vertex w with $\operatorname{deg}(w)>1$ and $\left\{v_{m}, w\right\}$ not an edge (if no such w exists, take $G^{\prime}=G$. We can rearrange edges as follows:

1. Introduce an edge from v_{m} to w
2. Delete an edge $\left\{v_{m}, l\right\}$ where l is a leaf.
3. Delete an edge $\{w, x\}$ where $x \neq v_{m}$.
4. Introduce an edge from x to l.

Note that no vertex's degree is changed by this procedure, and now v_{m} has an edge to w. Repeating this procedure until v_{m} has edges to all the other vertices of degree >1, we reach a graph G^{\prime} as desired.

Next, we recursively construct such a graph for every $m \geq 2$. For $m=2$, there is a unique such graph up to isomorphism: a path-graph with 3 vertices. Note that $k=2=\left\lfloor\frac{m+3}{2}\right\rfloor$ in this case. For $m=3$, there are two non-isomorphic graphs that work, one with the degree 3 vertex adjacent to the degree 2 vertex, and the other with the degree 3 and degree 2 vertex in separate components. In the first case, $k=3=\left\lfloor\frac{m+3}{2}\right\rfloor$, and in the second case, $k=5>\left\lfloor\frac{m+3}{2}\right\rfloor$.

Now assume such a graph G_{m} has been constructed for m, and construct such a graph G_{m+2} for $m+2$. Introduce three new vertices v_{m+2}, l_{1}, and l_{2}. Draw edges from v_{m+2} to the $m-1$ vertices of degree >1. Also draw edges from v_{m+2} to one of the leaves adjacent to v_{m} and from v_{m+2} to l_{1} and l_{2}. The resulting graph G_{m+2} has the desired degrees. Thus, such graphs exist for all $m \geq 2$.

We will prove the bound $k \geq\left\lfloor\frac{m+3}{2}\right\rfloor$ by induction on m. We have already checked the base cases $m=2$ and $m=3$. Assume the bound holds for m, and prove it for $m+2$. Let G be such a graph with maximum degree $m+2$. As explained above, we can assume that the vertex v_{m+2} of degree $m+2$ in G is connected to all the other vertices of degree >1. Form a graph G^{\prime} by deleting v_{m+2} and the two leaves adjacent to it from G (and deleting all edges incident to v_{m+2}). Then G^{\prime} is such a graph with maximum degree m, so G^{\prime} has at least $\left\lfloor\frac{m+3}{2}\right\rfloor$ leaves. In going from G to G^{\prime}, two leaves were deleted but the vertex of degree 2 was turned into a leaf. Hence, G has at least $\left\lfloor\frac{m+3}{2}\right\rfloor+1=\left\lfloor\frac{(m+2)+3}{2}\right\rfloor$ leaves, which completes the induction.
(6) Suppose (for contradiction) that $N(p, q ; 2)=N(p-1, q ; 2)+N(p, q-1 ; 2)$ with both terms on the right even, say $N(p-1, q ; 2)=2 a, N(p, q-1 ; 2)=2 b$. Let G be the complete graph on $2 a+2 b-1$ vertices, with each edges colored red or blue. It suffices (by minimality in the definition of $N(p, q ; 2)$ to show that G contains a red K_{p} or a blue K_{q}.

So assume that G does not contain a red K_{p} or a blue K_{q}. Define $r(v)$ to be the red-degree of vertex v (the number of red edges incident with v) and $b(v)$ to be the blue-degree of v.

First suppose that some vertex v has $r(v) \geq 2 a$. Let H be the subgraph of G induced by the set of vertices w with $\{v, w\}$ a red edge. Then H contains a red K_{p-1} or blue K_{q}. But a blue K_{q} contradicts G not having a blue K_{q}, and a red K_{p-1} in H creates a red K_{p} in G (by adding v back in), contradicting G not having a red K_{p}. Therefore, every vertex v satisfies $r(v) \leq 2 a-1$. Similarly, every vertex v satisfies $b(v) \leq 2 b-1$.

On the other hand, $r(v)+b(v)=2 a+2 b-2$, so we must have $r(v)=2 a-1, b(v)=2 b-1$ for all v. But then $\sum_{v} r(v)=(2 a-1)(2 a+2 b-1)$ is odd, which contradicts $\sum_{v} r(v)$ being twice the number of red edges in G.

Thus, strict inequality holds in $N(p, q ; 2) \leq N(p-1, q ; 2)+N(p, q-1 ; 2)$ if both terms on the right are even.
(7) Let H be the convex hull of the 5 points, and let k be the minimum size of a subset of the 5 points with convex hull containing all 5 points. There are 3 possible cases: $k=5$ (which makes H a pentagon), $k=4$ (which makes H a quadrilateral), and $k=3$ (which makes H a triangle).

These three cases are illustrated below:

Case 1: $k=5$. In this case, the 5 points determine a convex pentagon. So any 4 of the points determine a convex quadrilateral.

Case 2: $k=4$. In this case, the convex hull of 4 of the points contains the fifth point. Then the 4 points determine a convex quadrilateral.

Case 3: $k=3$. In this case, 3 of the points are the vertices of a triangle $A B C$ containing the other 2 points. Draw a line through these 2 points. This line intersects 2 sides of the triangle, say $A B$ and $A C$. Then B, C and the two vertices inside the triangle determine a convex quadrilateral.

