
MATH 108, FALL 2002

HOMEWORK 2 SOLUTIONS

(1) Recall that vertex v appears deg(v) − 1 times in the Prüfer code of T . So T has the desired
degrees iff its Prüfer code is some permutation of (2,2,3,3,5). Thus, there are 5!

2!2! = 30 such trees.

(2) We will show by induction that every Tk can be extended to a cheapest spanning tree (i.e., that
Tk is a subgraph of some cheapest spanning tree). It follows that Tn is a cheapest spanning tree
since Tn is a subgraph of a cheapest spanning tree T , and then Tn = T because Tn is already a
spanning tree.

For k = 1, T1 can be extended to a cheapest spanning tree since T1 is just one vertex with no edges,
so it is a subgraph of any cheapest spanning tree.

Suppose that Tk can be extended to a cheapest spanning tree C, and show that Tk+1 can also be
extended to a cheapest spanning tree. Let e be the new edge added to Tk to obtain Tk+1. If e is
already an edge of C then we are done. So assume e is not an edge of C.

Add the edge e into C; this introduces a simple closed path. Since e goes from a vertex in Tk to a
vertex not in Tk, this closed path must contain an edge e′ from a vertex not in Tk back into Tk. By
the description of the algorithm, we have c(e) ≤ c(e′). So the tree C ′ obtained from C by replacing
e′ with e is a cheapest spanning tree containing Tk+1 as a subgraph.

By induction, Tn can be extended to a cheapest spanning tree. Thus, Tn is a cheapest spanning
tree.

(3) Let T be a path-graph with n vertices. Without loss of generality, we can assume the edges of
T are {1, 2}, {2, 3}, . . . , {n − 1, n}. Label vertex 1 as 1, vertex 2 as n, vertex 3 as 2, vertex 4 as
n−1, etc. That is, vertex 2j−1 is labeled as j (1 ≤ j ≤ dn/2e) and vertex 2j is labeled as n− j +1
(1 ≤ j ≤ bn/2c).

The differences in labels across edges are then n− 1, n− 2, . . . , 1 in absolute value, so the labeling
is graceful.

(4) Let n be the number of vertices in G. By Problem 1C, G has n−1 edges. There are n− (m−1)
monovalent vertices, so (1.1) gives

2(n − 1) = n− (m − 1) +

m∑

i=2

i.

Solving for n, we see that

n =
m2 −m

2
+ 2.
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(5) As suggested in the book’s hint, let us first check that given such a graph G, there is a graph G ′

with the same number of vertices of each degree, and such that the vertex of degree m has edges
to the vertices of degrees 2, . . . ,m.

Let G be such a graph and let vm be its vertex of degree m. Suppose there is a vertex w with
deg(w) > 1 and {vm, w} not an edge (if no such w exists, take G′ = G. We can rearrange edges as
follows:

1. Introduce an edge from vm to w

2. Delete an edge {vm, l} where l is a leaf.

3. Delete an edge {w, x} where x 6= vm.

4. Introduce an edge from x to l.

Note that no vertex’s degree is changed by this procedure, and now vm has an edge to w. Repeating
this procedure until vm has edges to all the other vertices of degree > 1, we reach a graph G′ as
desired.

Next, we recursively construct such a graph for every m ≥ 2. For m = 2, there is a unique such
graph up to isomorphism: a path-graph with 3 vertices. Note that k = 2 = bm+3

2 c in this case. For
m = 3, there are two non-isomorphic graphs that work, one with the degree 3 vertex adjacent to
the degree 2 vertex, and the other with the degree 3 and degree 2 vertex in separate components.
In the first case, k = 3 = bm+3

2 c, and in the second case, k = 5 > bm+3
2 c.

Now assume such a graph Gm has been constructed for m, and construct such a graph Gm+2 for
m + 2. Introduce three new vertices vm+2, l1, and l2. Draw edges from vm+2 to the m− 1 vertices
of degree > 1. Also draw edges from vm+2 to one of the leaves adjacent to vm and from vm+2 to l1
and l2. The resulting graph Gm+2 has the desired degrees. Thus, such graphs exist for all m ≥ 2.

We will prove the bound k ≥ bm+3
2 c by induction on m. We have already checked the base cases

m = 2 and m = 3. Assume the bound holds for m, and prove it for m + 2. Let G be such a graph
with maximum degree m + 2. As explained above, we can assume that the vertex vm+2 of degree
m + 2 in G is connected to all the other vertices of degree > 1. Form a graph G′ by deleting vm+2

and the two leaves adjacent to it from G (and deleting all edges incident to vm+2). Then G′ is
such a graph with maximum degree m, so G′ has at least bm+3

2 c leaves. In going from G to G′,
two leaves were deleted but the vertex of degree 2 was turned into a leaf. Hence, G has at least
bm+3

2 c + 1 = b (m+2)+3
2 c leaves, which completes the induction.

(6) Suppose (for contradiction) that N(p, q; 2) = N(p − 1, q; 2) + N(p, q − 1; 2) with both terms
on the right even, say N(p − 1, q; 2) = 2a,N(p, q − 1; 2) = 2b. Let G be the complete graph on
2a+2b− 1 vertices, with each edges colored red or blue. It suffices (by minimality in the definition
of N(p, q; 2) to show that G contains a red Kp or a blue Kq.

So assume that G does not contain a red Kp or a blue Kq. Define r(v) to be the red-degree of
vertex v (the number of red edges incident with v) and b(v) to be the blue-degree of v.
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First suppose that some vertex v has r(v) ≥ 2a. Let H be the subgraph of G induced by the set
of vertices w with {v, w} a red edge. Then H contains a red Kp−1 or blue Kq. But a blue Kq

contradicts G not having a blue Kq, and a red Kp−1 in H creates a red Kp in G (by adding v
back in), contradicting G not having a red Kp. Therefore, every vertex v satisfies r(v) ≤ 2a − 1.
Similarly, every vertex v satisfies b(v) ≤ 2b− 1.

On the other hand, r(v) + b(v) = 2a + 2b − 2, so we must have r(v) = 2a − 1, b(v) = 2b − 1 for
all v. But then

∑
v r(v) = (2a − 1)(2a + 2b− 1) is odd, which contradicts

∑
v r(v) being twice the

number of red edges in G.

Thus, strict inequality holds in N(p, q; 2) ≤ N(p− 1, q; 2)+N(p, q− 1; 2) if both terms on the right
are even.

(7) Let H be the convex hull of the 5 points, and let k be the minimum size of a subset of the 5
points with convex hull containing all 5 points. There are 3 possible cases: k = 5 (which makes H
a pentagon), k = 4 (which makes H a quadrilateral), and k = 3 (which makes H a triangle).

These three cases are illustrated below:

A

B

C

D E

Case 1

Case 2

Case 3

Case 1: k = 5. In this case, the 5 points determine a convex pentagon. So any 4 of the points
determine a convex quadrilateral.

Case 2: k = 4. In this case, the convex hull of 4 of the points contains the fifth point. Then the 4
points determine a convex quadrilateral.

Case 3: k = 3. In this case, 3 of the points are the vertices of a triangle ABC containing the other
2 points. Draw a line through these 2 points. This line intersects 2 sides of the triangle, say AB
and AC. Then B,C and the two vertices inside the triangle determine a convex quadrilateral.
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