Tate Resolutions for Products of Projective Spaces (joint work with David A. Cox)

Evgeny Materov

materov@math.umass.edu

University of Massachusetts, Amherst

AMS Special Session on Toric Varieties Rutgers University October 6, 2007

▶ < □</p>

Outline

Tate Resolutions

- Background for Tate Resolutions
- Tate Resolutions
- Why should we study Tate resolutions?
- Known facts about the maps
- 2 Tate Resolutions for Products of Projective Spaces
 - Notation
 - The Case of Veronese embedding of \mathbb{P}^n (D. Cox)
- 3 The Case of Segre embedding of $\mathbb{P}^a imes \mathbb{P}^b$
 - The Shape of the Resolution
 - Maps in the resolution of Type I
 - Maps in the resolution of Type II
 - Examples

 $\begin{array}{c} \text{Tate Resolutions} \\ \text{Products of Projective Spaces} \\ \mathbb{P}^a \times \mathbb{P}^b \end{array}$

Exterior Algebras Definition Goals Maps

Background for Tate Resolutions

Basic Notation

- V and W are dual vector spaces over k: $V = W^*$
- $\dim(V) = \dim(W) = N + 1$
- $E = \wedge^{\bullet} V$ is a graded exterior algebra
- $E_{-i} = \wedge^i V$ are graded parts (we assume deg(V) = -1)

The Dualizing Module of E

- $\widehat{E} = \omega_E = \operatorname{Hom}_k(E, k)$ is a left *E*-module
- $\widehat{E}_i = \operatorname{Hom}_k(E_{-i}, k) = \operatorname{Hom}_k(\wedge^i V, k) = \wedge^i W$
- $\widehat{E}(p)$ is a graded *E*-module with $\widehat{E}(p)_q = \widehat{E}_{p+q}$
- $\widehat{E} \cong E(-N-1)$ (non-canonically)

イロト イ押ト イヨト イヨト

Exterior Algebras Definition Goals Maps

Definition of Tate Resolution

Tate Resolution

- *V* and *W* are dual vector spaces over *k*: $V = W^*$ (dim V = N + 1)
- \mathcal{F} is a coherent sheaf on $\mathbb{P}^N = \mathbb{P}(W) = (W \{0\})/k^*$
- Tate resolution is a bi-infinite exact sequence

$$T^{ullet}(\mathcal{F}):\cdots o T^{-1}(\mathcal{F}) o T^0(\mathcal{F}) o T^1(\mathcal{F}) o \cdots o T^p(\mathcal{F}) o \cdots$$

of free graded modules over exterior algebras $E = \wedge^{\bullet} V$.

Terms (Eisenbud, Fløystad and Schreyer, 2003, [EFS 03, ES 03])

$$T^{p}(\mathcal{F}) = \bigoplus_{i} \widehat{E}(i-p) \otimes_{k} H^{i}(\mathbb{P}(W), \mathcal{F}(p-i)),$$

where $\widehat{E} = \operatorname{Hom}_k(E, k) = \wedge^{\bullet} W$ as an *E*-module.

• • • • • • • • • • • • •

 $\begin{array}{c} \text{Tate Resolutions} \\ \text{Products of Projective Spaces} \\ \mathbb{P}^a \times \mathbb{P}^b \end{array}$

Exterior Algebras Definition Goals Maps

Why should we study Tate resolutions?

Tate resolution keeps a LOT of information

- Beilinson-Gelfand-Gelfand (BGG) correspondence: D^b(P(W)) = Kom[•](E - mod)
- Algebraic properties of coherent sheaves
 - Regularity of ${\cal F}$
 - Duality
 - Koszul cohomology (introduced by M. Green) ← new
- Elimination theory
 - Resultants (A. Khetan, [Kh1, Kh2], D. Eisenbud, F.-O. Schreyer, [ES 03])
 - Hyperdeterminants

Exterior Algebras Definition Goals Maps

Known facts about the maps

1. If i < j, then the map

$$d^p_{i,j}: \widehat{E}(i-p)\otimes H^i(\mathcal{F}(p-i))
ightarrow \widehat{E}(j-p-1)\otimes H^j(\mathcal{F}(p+1-j))$$

in $d^{p} = \bigoplus_{i,j} d^{p}_{i,j} : T^{p} \rightarrow T^{p+1}$ is zero.

2. The (i, i)-components of the map $d^p : T^p \to T^{p+1}$ are known explicitly: $\widehat{E}(i-p) \otimes H^i(\mathcal{F}(p-i)) \to \widehat{E}(i-p-1) \otimes H^i(\mathcal{F}(p+1-i))$ $f \otimes m \longmapsto \sum f e^* \otimes e \cdot m$

$$f \otimes m \longmapsto \sum_i f e_i^* \otimes e_i m$$

where $\{e_i\}_{i=\overline{1,N}}$ is a basis of V; $\{e_i^*\}_{i=\overline{1,N}}$ is a basis of W, and correspond to

$$W \otimes H^i(\mathcal{F}(p-i)) \rightarrow H^i(\mathcal{F}(p+1-i)),$$

i.e., are the Koszul-type maps.

< ロ > < 同 > < 回 > < 回 >

 $\begin{array}{c} \text{Tate Resolutions} \\ \text{Products of Projective Spaces} \\ \mathbb{P}^a \times \mathbb{P}^b \end{array}$

Exterior Algebra Definition Goals Maps

Known facts about the maps

3. For each differential

$$d^{p}:\,T^{p}(\mathcal{F})\to\,T^{p+1}(\mathcal{F})$$

• $T^{\geq \rho}(\mathcal{F})$ is a minimal injective resolution of $\ker(d^{\rho})$

T^{<p}(*F*) is a minimal projective resolution of ker(*d*^p)

4. Recall that a coherent sheaf \mathcal{F} is called *m*-regular if

$$H^i(\mathcal{F}(m-i)) = 0$$
, for all $i > 0$.

If $p \ge m = \operatorname{reg}(\mathcal{F})$, then

$$\cdots \to T^{m-2}(\mathcal{F}) \to T^{m-1}(\mathcal{F}) \to \widehat{E}(-m) \otimes H^0(\mathcal{F}(m)) \to \cdots$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tate Resolutions Products of Projective Spaces part > pb

Notation Case of I

Notation

- $X = \mathbb{P}^{\ell_1} \times \cdots \times \mathbb{P}^{\ell_r}$, dim $(X) = \ell_1 + \cdots + \ell_r = \ell$
- S = k[x⁽¹⁾,...,x^(r)] graded polynomial ring in r groups of variables
- $\mathbf{x}^{(i)} = (x_0^{(i)}, \dots, x_{\ell_i}^{(i)})$, where for all $i = 1, \dots, r$ $\deg(x_0^{(i)}) = \dots = \deg(x_{\ell_i}^{(i)}) = (0, \dots, 1, \dots, 0)$

• For $(n_1, \ldots, n_r) \in \mathbb{Z}^r$ denote the sheaf $\mathcal{O}_X(n_1, \ldots, n_r) = p_1^* \mathcal{O}_{\mathbb{P}^{\ell_1}}(n_1) \otimes \cdots \otimes p_r^* \mathcal{O}_{\mathbb{P}^{\ell_r}}(n_r),$ where $p_j : \mathbb{P}^{\ell_1} \times \cdots \times \mathbb{P}^{\ell_r} \to \mathbb{P}^{\ell_j}$ is the projection.

The subspace in S of polynomials in x⁽¹⁾,..., x^(r) homogeneous of degrees n_i ≥ 0 in each x⁽ⁱ⁾ is

$$S_{n_1,\ldots,n_r} = H^0(X, \mathcal{O}_X(n_1,\ldots,n_r))$$

- ロ ト - (同 ト - (三 ト -) -)

Tate Resolutions Products of Projective Spaces part of Drojective Spaces Draw Drojective Spaces

Notation

- Fix the degree vector $d = (d_1, \dots, d_r) \in \mathbb{Z}_{>0}^r$
- Let ν_d be the embedding

$$u_d: X = \mathbb{P}^{\ell_1} \times \cdots \times \mathbb{P}^{\ell_r} \longrightarrow \mathbb{P}(W), \quad W = S_{d_1, \dots, d_r}$$

which is a combination of Veronese and Segre embeddings

Consider the sheaf

$$\mathcal{F} = \nu_{d*}\mathcal{O}_X(m_1,\ldots,m_r)$$

Since

$$\mathcal{O}_{\mathbb{P}(W)}(1)|_{\nu_d(X)} = \nu_{d*}\mathcal{O}_X(d_1,\ldots,d_r),$$

we have:

$$H^{i}(\mathbb{P}(W),\mathcal{F}(j))=H^{i}(X,\mathcal{O}_{X}(m_{1}+jd_{1},\ldots,m_{r}+jd_{r}))$$

• Now the Tate resolution has the terms $T^{\rho}(\mathcal{F}) = \bigoplus_{i} T_{i}^{\rho}$:

$$T_i^p = \widehat{E}(i-p) \otimes H^i(X, \mathcal{O}_X(m_1 + (p-i)d_1, \dots, m_r + (p-i)d_r))$$

Notation Case of Pⁿ

The Case of Veronese embedding of \mathbb{P}^n (D. Cox)

•
$$X = \mathbb{P}^n$$
; $\mathcal{F} = \nu_{d*} \mathcal{O}_{\mathbb{P}^n}(\ell)$ for any $\ell \in \mathbb{Z}$, where

- $\nu_d : \mathbb{P}^n \to \mathbb{P}(W)$ is the *d*-fold Veronese embedding
- $W = S_d \subset S = k[x_0, \ldots, x_n]$ polynomials of degree d

• Since
$$\mathcal{O}_{\mathbb{P}(W)}(1)|_{\nu_d(\mathbb{P}^n)} = \nu_{d*}\mathcal{O}_{\mathbb{P}^n}(d)$$
, we have
 $T^p(\mathcal{F}) = \widehat{E}(-p) \otimes S_{\ell+pd} \bigoplus \widehat{E}(n-p) \otimes S^*_{-n-1-(\ell+(p-n)d)}$

• The map $T^{p}(\mathcal{F}) \to T^{p+1}(\mathcal{F})$ has the following form:

- ロ ト - (同 ト - (三 ト -) -)

where $a = \ell + (p + 1)d$, $\rho = (n + 1)(d - 1)$

Notation Case of Pⁿ

The Case of Veronese embedding of \mathbb{P}^n (D. Cox)

• For
$$f \in k[x_0, ..., x_n]$$
 and $0 \le j \le n$ of degree d , define

$$\Delta_j(f) = \frac{f(y_0, ..., y_{j-1}, x_j, x_{j+1}, ..., x_n) - f(y_0, ..., y_{j-1}, y_j, x_{j+1}, ..., x_n)}{x_j - y_j}$$

The Bezoutian of homogeneous polynomials *f*₀,..., *f_n* ∈ *k*[*x*₀,..., *x_n*] of degree *d* is the determinant

$$\Delta = \det \Delta_j(f_i) = \sum_{|\alpha| \le \rho} \Delta_{\alpha}(x) y^{\alpha} = \sum_{|\alpha| \le \rho} \Delta_{\alpha}(x) \otimes x^{\alpha}$$

• The Bezoutian in degree $(\rho - a, a)$ gives a linear map $\bigwedge^{n+1} W = \bigwedge^{n+1} S_d \to S_{\rho-a} \otimes S_a,$

which corresponds to an *E*-module homomorphism

$$B_{\rho}:\widehat{E}(n-p)\otimes S^*_{
ho-a}
ightarrow \widehat{E}(-p-1)\otimes S_a$$

Theorem. (D. Cox, 2007, [Cox 07]) The map δ_p in T^p(F) → T^{p+1}(F) is equal to (-1)^pB_p defined by the Bezoutian.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

The Case of Segre embedding of $\mathbb{P}^a \times \mathbb{P}^b$

- X = ℙ^a × ℙ^b − product of projective spaces
- $\mathcal{F} = \nu_* \mathcal{O}_X(k, \ell)$ for any $k, \ell \in \mathbb{Z}$, where
- $\nu: X \to \mathbb{P}(W)$ is the Segre embedding
- W is spanned by $x_i y_j$, $0 \le i \le a$, $0 \le j \le b$
- In particular,

$$\operatorname{reg}(\mathcal{F}) = \max\{-\min\{k,\ell\},\min\{b-k,a-\ell\}\}$$

- $S = k[\mathbf{x}, \mathbf{y}] = k[x_0, \dots, x_a; y_0, \dots, y_b]$ polynomial ring
- Grading: $\deg(x_i) = (1, 0), \deg(y_j) = (0, 1)$
- Bi-homogeneous part of $S_{m,n} \subset S$ is spanned by $x^{\alpha}y^{\beta}$, $|\alpha| = m$, $|\beta| = n$

(日)

Shape Type I Type II Examples

The Shape of the Resolution

Terms

The terms of the Tate resolution are

$$T^{p}(\mathcal{F}) = \oplus_{i}\widehat{E}(i-p)\otimes H^{i}(X,\mathcal{O}_{X}(k+p-i,\ell+p-i))$$

where

$$H^i(X,\mathcal{O}_X(k+p-i,\ell+p-i))=0$$
 for $i\notin\{0,a,b,a+b\}$.

Types of the resolution

There are three types of the resolution of $\mathcal{F} = \nu_* \mathcal{O}_X(k, \ell)$ on $X = \mathbb{P}^a \times \mathbb{P}^b$:

I)
$$-a \le k - \ell \le b$$

II) $k - \ell > b$
III) $k - \ell < -a$ (similar to type II))

Shape **Type I** Type II Examples

Terms of the Resolution of Type I

Terms corresponding to Koszul maps (for all types)

Define the numbers:

- $p^+ = \max\{-\min\{k,\ell\},\min\{b-k,a-\ell\}\} = \operatorname{reg}(\mathcal{F}),$
- $p^{-} = \min\{-\min\{k, \ell\}, \min\{b k, a \ell\}\} 1$. Then

$$T^{p}(\mathcal{F}) = \begin{cases} \widehat{E}(-p) \otimes S_{k+p,\ell+p} & p \geq p^{+} \\ \widehat{E}(a+b-p) \otimes S^{*}_{b-k-1-p,a-\ell-1-p} & p \leq p^{-}. \end{cases}$$

Terms corresponding to the non-Koszul maps of Type I resolution

Assume that \mathcal{F} has Type I ($-a \le k - \ell \le b$). Then $p^- = -\min\{k, \ell\} - 1$ and $p^+ = \min\{b - k, a - \ell\}$. Furthermore, if $p^- , then$

$$\widehat{E}(a+b-p)\otimes S^*_{b-k-1-p,a-\ell-1-p}$$

$$T^p(\mathcal{F}) = \bigoplus_{\widehat{E}(-p)\otimes S_{k+p,\ell+p}}$$

Shape Type I Type II Examples

Maps in the resolution of Type I

Toric Jacobian

Given
$$f_0, \ldots, f_{a+b} \in W = S_{1,1}$$
, where $f_j(x, y) = \sum_{i,k} a_{i,j,k} x_i y_j$, the toric Jacobian is

$$J(f_0, \dots, f_{a+b}) = \frac{1}{x_0 y_b} \det \begin{pmatrix} f_0 & \cdots & f_{a+b} \\ \frac{\partial f_0}{\partial x_1} & \cdots & \frac{\partial f_{a+b}}{\partial x_1} \\ \vdots & & \vdots \\ \frac{\partial f_0}{\partial x_a} & \cdots & \frac{\partial f_{a+b}}{\partial y_0} \\ \frac{\partial f_0}{\partial y_0} & \cdots & \frac{\partial f_{a+b}}{\partial y_0} \\ \vdots & & \vdots \\ \frac{\partial f_0}{\partial y_{b-1}} & \cdots & \frac{\partial f_{a+b}}{\partial y_{b-1}} \end{pmatrix} \in S_{b,a}.$$

We get a linear map $J : \bigwedge^{a+b+1} W \longrightarrow S_{b,a}.$

イロト イ団ト イヨト イヨト

크

Shape Type I Type II Examples

Maps in the resolution of Type I

The non-Koszul part of the differential $d^{p}: T^{p}(\mathcal{F}) \to T^{p+1}(\mathcal{F})$ looks like

$$\widehat{E}(a+b-p) \otimes S^*_{b-k-1-p,a-\ell-1-p} o \widehat{E}(-p-1) \otimes S_{k+p+1,\ell+p+1}$$

and is induced by the map

$$\delta_1: \wedge^{a+b+1} W \to S_{b-k-1-p,a-\ell-1-p} \otimes S_{k+p+1,\ell+p+1}.$$

The change of variables

$$J \mapsto J(X_i + x_i, Y_j + y_j) \in k[\mathbf{X}, \mathbf{Y}, \mathbf{x}, \mathbf{y}] \cong S \otimes S$$

in the toric Jacobian extends the map J to

$$J = \oplus_{\alpha,\beta} J_{\alpha,\beta}, \quad J_{\alpha,\beta} : \bigwedge^{a+b+1} W \longrightarrow S_{b-\alpha,a-\beta} \otimes S_{\alpha,\beta}.$$

Theorem. The map δ_1 can be chosen to be $(-1)^p J_{k+p+1,\ell+p+1}$.

Shape Type I Type II Examples

Maps in the resolution of Type II

Terms corresponding to the non-Koszul maps of Type II resolution

Assume that \mathcal{F} has Type 2 $(k - \ell > b)$. Then $p^- = b - k - 1$ and $p^+ = -\ell$. Furthermore, if $p^- , then$ $<math>T^p(\mathcal{F}) = \widehat{E}(b - p) \otimes S_{k+p-b,0} \otimes S_{0,-\ell-p-1}^*$.

Differentials:

The differential in $T^{p^-}(\mathcal{F}) \to T^{p^-+1}(\mathcal{F})$ looks like

$$d^{-}:\widehat{E}(a+1+k)\otimes S^{*}_{0,a+k-\ell-b}\rightarrow \widehat{E}(k)\otimes S_{0,0}\otimes S^{*}_{0,k-\ell-b-1}.$$

The differential in $T^{p^+-1}(\mathcal{F}) \to T^{p^+}(\mathcal{F})$ looks like

$$d^{+}:\widehat{E}(b+1+\ell)\otimes \mathcal{S}_{k-\ell-b-1,0}\otimes \mathcal{S}^{*}_{0,0}\rightarrow \widehat{E}(\ell)\otimes \mathcal{S}_{k-\ell,0}.$$

Shape Type I **Type II** Examples

Maps in the resolution of Type II

For given $f_0, \ldots, f_{a+b} \in W = S_{1,1}$ write $f_i = \sum_i A_{ij} x_j$, $A_{ij} \in S_{0,1}$ and define the map

$$\gamma_{\alpha}: \bigwedge^{a+1} W \xrightarrow{M} S_{0,a+1} \longrightarrow S_{0,\alpha}^* \otimes S_{0,a+1+\alpha},$$

where $M(f_0, \ldots, f_a) = \det(A_{ij}) \in S_{0,a+1}$, and

$$S_{0,a+1} \longrightarrow S^*_{0,\alpha} \otimes S_{0,a+1+\alpha}$$

is the comultiplication map. This induces (by abuse of notation) the maps:

$$\begin{split} \gamma_{\alpha} : \widehat{E}(a+1+k) \otimes S_{0,\alpha} &\longrightarrow \widehat{E}(k) \otimes S_{0,a+1+\alpha} \\ \gamma_{\alpha}^* : \widehat{E}(a+1+k) \otimes S_{0,a+1+\alpha}^* &\longrightarrow \widehat{E}(k) \otimes S_{0,\alpha}^*. \end{split}$$

Theorem. The non-Koszul differentials in the Tate resolution of Type II can be chosen to be $d^- = \gamma^*_{k-\ell-b-1}$ and $d^+ = \gamma_{k-\ell-b-1}$.

< D > < P > < E > < E</p>

Shape Type I Type II Examples

Example (on maps of Type I)

Let
$$\nu: X = \mathbb{P}^2 \times \mathbb{P}^1 \to \mathbb{P}(W) = \mathbb{P}^5, \mathcal{F} = \nu_* \mathcal{O}_X(0, 1).$$

Shape Type I Type II Examples

Example (on maps of Type II)

Let
$$\nu: X = \mathbb{P}^2 \times \mathbb{P}^1 \to \mathbb{P}(W) = \mathbb{P}^5, \ \mathcal{F} = \nu_* \mathcal{O}_X(3, 0).$$

The only nonzero diagonal maps appear in $T^{-3}(\mathcal{F}) \to T^{-2}(\mathcal{F})$:

(at cohomological levels 3 and 1) and in $T^{-1}(\mathcal{F}) \to T^0(\mathcal{F})$:

(at cohomological levels 1 and 0).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tate Resolutions Products of Projective Spaces P^a × P^b Shape Type II Examples

References

- D. A. Cox, *Bezoutians and Tate resolutions*, J. Algebra **311** (2007), 606–618.
- D. Eisenbud, G. Fløystad and F.-O. Schreyer, Sheaf cohomology and free resolutions over exterior algebras, Trans. Amer. Math. Soc. 355 (2003), 4397–4426.
- D. Eisenbud and F.-O. Schreyer, *Resultants and Chow forms via exterior syzygies*, with an appendix by J. Weyman, J. Amer. Math. Soc. 16 (2003), 537–579.
- - A. Khetan, *Exact matrix formula for the unmixed resultant in three variables*, J. Pure Appl. Algebra **198** (2005), 237–256.
- A. Khetan, *The resultant of an unmixed bivariate system* J. Symbolic Comput. **36**, 425–442.

< < >> < <</p>