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Background for Tate Resolutions

Basic Notation
• V and W are dual vector spaces over k : V = W∗

• dim(V ) = dim(W ) = N + 1
• E = ∧•V is a graded exterior algebra
• E−i = ∧iV are graded parts (we assume deg(V ) = −1)

The Dualizing Module of E

• bE = ωE = Homk (E , k) is a left E-module

• bEi = Homk (E−i , k) = Homk (∧iV , k) = ∧iW

• bE(p) is a graded E-module with bE(p)q = bEp+q

• bE ∼= E(−N − 1) (non-canonically)
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Definition of Tate Resolution

Tate Resolution

• V and W are dual vector spaces over k : V = W∗ (dim V = N + 1)
• F is a coherent sheaf on PN = P(W ) = (W − {0})/k∗
• Tate resolution is a bi-infinite exact sequence

T •(F) : · · · → T−1(F)→ T 0(F)→ T 1(F)→ · · · → T p(F)→ · · ·

of free graded modules over exterior algebras E = ∧•V .

Terms (Eisenbud, Fløystad and Schreyer, 2003, [EFS 03, ES 03])

T p(F) =
L

i
bE(i − p)⊗k H i (P(W ),F(p − i)),

where bE = Homk (E , k) = ∧•W as an E-module.
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Why should we study Tate resolutions?

Tate resolution keeps a LOT of information

1 Beilinson-Gelfand-Gelfand (BGG) correspondence:
Db(P(W )) = Kom•(E −mod)

2 Algebraic properties of coherent sheaves
• Regularity of F

• Duality

• Koszul cohomology (introduced by M. Green)←− new

3 Elimination theory
• Resultants (A. Khetan, [Kh1, Kh2], D. Eisenbud, F.-O. Schreyer, [ES 03])

• Hyperdeterminants
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Known facts about the maps

1. If i < j , then the map

dp
i,j : bE(i − p)⊗ H i (F(p − i))→ bE(j − p − 1)⊗ H j (F(p + 1− j))

in dp = ⊕i,jdp
i,j : T p → T p+1 is zero.

2. The (i, i)-components of the map dp : T p → T p+1 are known explicitly:

bE(i − p)⊗ H i (F(p − i))→ bE(i − p − 1)⊗ H i (F(p + 1− i))

f ⊗m 7−→
P

i f e∗i ⊗ ei m

where {ei}i=1,N is a basis of V ; {e∗i }i=1,N is a basis of W , and correspond to

W ⊗ H i (F(p − i))→ H i (F(p + 1− i)),

i.e., are the Koszul-type maps.
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Known facts about the maps

3. For each differential
dp : T p(F)→ T p+1(F)

• T≥p(F) is a minimal injective resolution of ker(dp)

• T<p(F) is a minimal projective resolution of ker(dp)

4. Recall that a coherent sheaf F is called m-regular if

H i (F(m − i)) = 0, for all i > 0.

If p ≥ m = reg(F), then

· · · → T m−2(F)→ T m−1(F)→ bE(−m)⊗ H0(F(m))→ · · · .
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Notation

• X = P`1 × · · · × P`r , dim(X ) = `1 + · · ·+ `r = `

• S = k [x(1), . . . , x(r)] – graded polynomial ring
in r groups of variables

• x(i) = (x (i)
0 , . . . , x (i)

`i
), where for all i = 1, . . . , r

deg(x (i)
0 ) = · · · = deg(x (i)

`i
) = (0, . . . , 1, . . . , 0)

• For (n1, . . . , nr ) ∈ Zr denote the sheaf

OX (n1, . . . , nr ) = p∗1OP`1 (n1)⊗ · · · ⊗ p∗r OP`r (nr ),

where pj : P`1 × · · · × P`r → P`j is the projection.

• The subspace in S of polynomials in x(1), . . . , x(r) homogeneous of
degrees ni ≥ 0 in each x(i) is

Sn1,...,nr = H0(X ,OX (n1, . . . , nr ))
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Notation

• Fix the degree vector d = (d1, . . . , dr ) ∈ Zr
>0

• Let νd be the embedding

νd : X = P`1 × · · · × P`r −→ P(W ), W = Sd1,...,dr

which is a combination of Veronese and Segre embeddings

• Consider the sheaf

F = νd∗OX (m1, . . . ,mr )

• Since

OP(W )(1)|νd (X) = νd∗OX (d1, . . . , dr ),

we have:

H i (P(W ),F(j)) = H i (X ,OX (m1 + jd1, . . . ,mr + jdr ))

• Now the Tate resolution has the terms T p(F) = ⊕iT p
i :

T p
i = bE(i − p)⊗ H i (X ,OX (m1 + (p − i)d1, . . . ,mr + (p − i)dr ))
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The Case of Veronese embedding of Pn (D. Cox)

• X = Pn; F = νd∗OPn (`) for any ` ∈ Z, where

• νd : Pn → P(W ) is the d-fold Veronese embedding

• W = Sd ⊂ S = k [x0, . . . , xn] polynomials of degree d

• Since OP(W )(1)|νd (Pn) = νd∗OPn (d), we have

T p(F) = bE(−p)⊗ S`+pd
L bE(n − p)⊗ S∗−n−1−(`+(p−n)d)

• The map T p(F)→ T p+1(F) has the following form:

bE(n − p)⊗ S∗ρ−a

αp //

δp

))SSSSSSSSSSSSSS
bE(n − p − 1)⊗ S∗ρ−a−dL L

bE(−p)⊗ Sa−d

βp // bE(−p − 1)⊗ Sa,

where a = `+ (p + 1)d , ρ = (n + 1)(d − 1)
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The Case of Veronese embedding of Pn (D. Cox)

• For f ∈ k [x0, . . . , xn] and 0 ≤ j ≤ n of degree d , define

∆j (f ) =
f (y0,...,yj−1,xj ,xj+1,...,xn)−f (y0,...,yj−1,yj ,xj+1,...,xn)

xj−yj

• The Bezoutian of homogeneous polynomials f0, . . . , fn ∈ k [x0, . . . , xn] of
degree d is the determinant

∆ = det ∆j (fi ) =
P
|α|≤ρ ∆α(x)yα =

P
|α|≤ρ ∆α(x)⊗ xα

• The Bezoutian in degree (ρ− a, a) gives a linear mapVn+1W =
Vn+1Sd → Sρ−a ⊗ Sa,

which corresponds to an E-module homomorphism

Bp : bE(n − p)⊗ S∗ρ−a → bE(−p − 1)⊗ Sa

• Theorem. (D. Cox, 2007, [Cox 07]) The map δp in T p(F)→ T p+1(F) is
equal to (−1)pBp defined by the Bezoutian.
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The Case of Segre embedding of Pa × Pb

• X = Pa × Pb – product of projective spaces

• F = ν∗OX (k , `) for any k , ` ∈ Z, where

• ν : X → P(W ) is the Segre embedding

• W is spanned by xiyj , 0 ≤ i ≤ a, 0 ≤ j ≤ b

• In particular,

reg(F) = max{−min{k , `},min{b − k , a− `}}

• S = k [x, y] = k [x0, . . . , xa; y0, . . . , yb] – polynomial ring

• Grading: deg(xi ) = (1, 0), deg(yj ) = (0, 1)

• Bi-homogeneous part of Sm,n ⊂ S is spanned by xαyβ , |α| = m, |β| = n
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The Shape of the Resolution

Terms

The terms of the Tate resolution are

T p(F) = ⊕i
bE(i − p)⊗ H i (X ,OX (k + p − i, `+ p − i)),

where

H i (X ,OX (k + p − i, `+ p − i)) = 0 for i /∈ {0, a, b, a + b}.

Types of the resolution

There are three types of the resolution of F = ν∗OX (k , `) on X = Pa × Pb:
I) −a ≤ k − ` ≤ b
II) k − ` > b
III) k − ` < −a (similar to type II))
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Terms of the Resolution of Type I

Terms corresponding to Koszul maps (for all types)

Define the numbers:
p+ = max{−min{k , `},min{b − k , a− `}} = reg(F),
p− = min{−min{k , `},min{b − k , a− `}} − 1. Then

T p(F) =

(bE(−p)⊗ Sk+p,`+p p ≥ p+

bE(a + b − p)⊗ S∗b−k−1−p,a−`−1−p p ≤ p−.

Terms corresponding to the non-Koszul maps of Type I resolution

Assume that F has Type I (−a ≤ k − ` ≤ b).
Then p− = −min{k , `} − 1 and p+ = min{b − k , a− `}.
Furthermore, if p− < p < p+, then

T p(F) =

bE(a + b − p)⊗ S∗b−k−1−p,a−`−1−pL
bE(−p)⊗ Sk+p,`+p.
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Maps in the resolution of Type I

Toric Jacobian

Given f0, . . . , fa+b ∈ W = S1,1, where fj (x , y) =
P

i,k ai,j,k xiyj ,
the toric Jacobian is

J(f0, . . . , fa+b) =
1

x0yb
det

0BBBBBBBBBBBBB@

f0 · · · fa+b
∂f0
∂x1

· · · ∂fa+b
∂x1

...
...

∂f0
∂xa

· · · ∂fa+b
∂xa

∂f0
∂y0

· · · ∂fa+b
∂y0

...
...

∂f0
∂yb−1

· · · ∂fa+b
∂yb−1

1CCCCCCCCCCCCCA
∈ Sb,a.

We get a linear map J :
Va+b+1W −→ Sb,a.
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Maps in the resolution of Type I

The non-Koszul part of the differential dp : T p(F)→ T p+1(F) looks like

bE(a + b − p)⊗S∗b−k−1−p,a−`−1−p → bE(−p − 1)⊗Sk+p+1,`+p+1

and is induced by the map

δ1 : ∧a+b+1W → Sb−k−1−p,a−`−1−p ⊗ Sk+p+1,`+p+1.

The change of variables

J 7→ J(Xi + xi ,Yj + yj ) ∈ k [X,Y, x, y] ∼= S ⊗ S

in the toric Jacobian extends the map J to

J = ⊕α,βJα,β , Jα,β :
Va+b+1W −→ Sb−α,a−β ⊗ Sα,β .

Theorem. The map δ1 can be chosen to be (−1)pJk+p+1,`+p+1.
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Maps in the resolution of Type II

Terms corresponding to the non-Koszul maps of Type II resolution

Assume that F has Type 2 (k − ` > b).
Then p− = b − k − 1 and p+ = −`. Furthermore, if p− < p < p+, then

T p(F) = bE(b − p)⊗ Sk+p−b,0 ⊗ S∗0,−`−p−1.

Differentials:

The differential in T p−(F)→ T p−+1(F) looks like

d− : bE(a + 1 + k)⊗ S∗0,a+k−`−b → bE(k)⊗ S0,0 ⊗ S∗0,k−`−b−1.

The differential in T p+−1(F)→ T p+

(F) looks like

d+ : bE(b + 1 + `)⊗ Sk−`−b−1,0 ⊗ S∗0,0 → bE(`)⊗ Sk−`,0.
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Maps in the resolution of Type II

For given f0, . . . , fa+b ∈ W = S1,1 write fi =
P

i Aij xj , Aij ∈ S0,1 and define the
map

γα :
Va+1W M−−→ S0,a+1 −→ S∗0,α ⊗ S0,a+1+α,

where M(f0, . . . , fa) = det(Aij ) ∈ S0,a+1, and

S0,a+1 −→ S∗0,α ⊗ S0,a+1+α

is the comultiplication map. This induces (by abuse of notation) the maps:

γα : bE(a + 1 + k)⊗ S0,α −→ bE(k)⊗ S0,a+1+α

γ∗α : bE(a + 1 + k)⊗ S∗0,a+1+α −→ bE(k)⊗ S∗0,α.

Theorem. The non-Koszul differentials in the Tate resolution of Type II can be
chosen to be d− = γ∗k−`−b−1 and d+ = γk−`−b−1.
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Example (on maps of Type I)

Let ν : X = P2 × P1 → P(W ) = P5, F = ν∗OX (0, 1).

· · · → bE(4)⊗ S∗1,1 //

J0,1

��0
00

00
00

00
00

00
00

00
00

00
00

00
00

00
0

bE(3)⊗ S∗0,0

−J1,2

��1
11

11
11

11
11

11
11

11
11

11
11

11
11

11
1L

0L
0L

bE(0)⊗ S0,1
// bE(−1)⊗ S1,2 → · · ·
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Example (on maps of Type II)

Let ν : X = P2 × P1 → P(W ) = P5, F = ν∗OX (3, 0).
The only nonzero diagonal maps appear in T−3(F)→ T−2(F):

· · · → bE(6)⊗ S∗0,4
d−

**UUUUUUUUUU

bE(3)⊗ S0,0 ⊗ S∗0,1 → · · ·

(at cohomological levels 3 and 1) and in T−1(F)→ T 0(F):

· · · → bE(2)⊗ S1,0 ⊗ S∗0,0
d+

**UUUUUUUUUUU

bE(0)⊗ S3,0 → · · ·

(at cohomological levels 1 and 0).
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