A ring structure on intersection cohomology of hypertoric varieties

Tom Braden¹ and Nicholas Proudfoot²

¹University of Massachusetts, Amherst

²University of Oregon

October 4, 2007

伺い イヨト イヨト

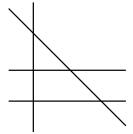
Outline

2 Minimal extension sheaves

æ

To a rational hyperplane arrangement \mathcal{H} in \mathbb{R}^d , associate a *Hypertoric variety* $\mathfrak{M}_{\mathcal{H}}$.

• $\dim_{\mathbb{C}}\mathfrak{M}_{\mathcal{H}}=2d$, torus $T=(\mathbb{C}^*)^d$ acts

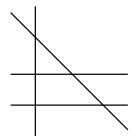


(4回) (4回) (4回)

æ

To a rational hyperplane arrangement \mathcal{H} in \mathbb{R}^d , associate a *Hypertoric variety* $\mathfrak{M}_{\mathcal{H}}$.

- dim $_{\mathbb{C}} \mathfrak{M}_{\mathcal{H}} = 2d$, torus $T = (\mathbb{C}^*)^d$ acts
- Rationally smooth $\iff \mathcal{H}$ is simple

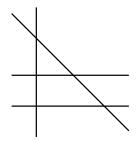


▲□ ▶ ▲ □ ▶ ▲ □ ▶

3

To a rational hyperplane arrangement \mathcal{H} in \mathbb{R}^d , associate a *Hypertoric variety* $\mathfrak{M}_{\mathcal{H}}$.

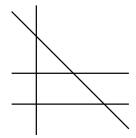
- dim $_{\mathbb{C}}\mathfrak{M}_{\mathcal{H}}=2d$, torus $T=(\mathbb{C}^*)^d$ acts
- Rationally smooth $\iff \mathcal{H}$ is simple
- Smooth $\iff \mathcal{H}$ is simple and unimodular.



・ 同 ト ・ ヨ ト ・ ヨ ト

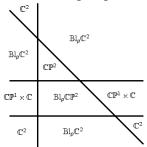
To a rational hyperplane arrangement \mathcal{H} in \mathbb{R}^d , associate a *Hypertoric variety* $\mathfrak{M}_{\mathcal{H}}$.

- dim $_{\mathbb{C}}\mathfrak{M}_{\mathcal{H}}=2d$, torus $\mathcal{T}=(\mathbb{C}^*)^d$ acts
- Rationally smooth $\iff \mathcal{H}$ is simple
- Smooth $\iff \mathcal{H}$ is simple and unimodular.
- Never compact



回 と く ヨ と く ヨ と

The toric varieties X_P whose moment polyhedra are the chambers of \mathcal{H} are Lagrangian subvarieties of $\mathfrak{M}_{\mathcal{H}}$.

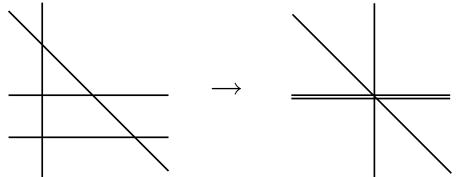


If $\mathfrak{M}_{\mathcal{H}}$ is smooth, then every X_P is smooth, and $\mathfrak{M}_{\mathcal{H}} = \bigcup_P T^* X_P$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

If \mathcal{H} is central, then $\mathfrak{M}_{\mathcal{H}}$ is affine. If $\widetilde{\mathcal{H}}$ is a simplification of \mathcal{H} , there is a map $\mathfrak{M}_{\widetilde{\mathcal{H}}} \to \mathfrak{M}_{\mathcal{H}}$ which is an (orbifold) resolution of singularities.



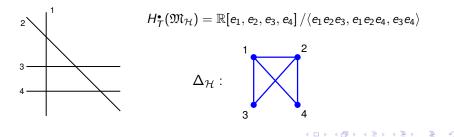
◆□ → ◆ □ → ◆ □ →

Equivariant cohomology

If $\mathcal{H} = \{H_1, \ldots, H_n\}$ is simple, \exists canonical ring isomorphism

$$H^{ullet}_{T}(\mathfrak{M}_{\mathcal{H}}) = \mathbb{R}[e_1,\ldots,e_n]/\langle \prod_{i\in S} e_i \mid \bigcap_{i\in S} H_i = \varnothing \rangle.$$

This is the face ring $\mathbb{R}[\Delta_{\mathcal{H}}]$ of the matroid complex of \mathcal{H} .



IH Betti numbers

Theorem (Proudfoot-Webster '04)

If \mathcal{H} is central, then there is an isomorphism

 $IH^{\bullet}_{T}(\mathfrak{M}_{\mathcal{H}}) \cong \mathbb{R}[\Delta^{bc}_{\mathcal{H}}]$

of $H^{\bullet}_{T}(pt)$ -modules.

 $\begin{array}{l} \Delta_{\mathcal{H}}^{bc} = \text{"broken circuit complex"} \\ = \text{simplices of } \Delta_{\mathcal{H}} \text{ containing no broken circuit.} \\ \textbf{circuit} = \text{minimal non-face } C \text{ of } \Delta_{\mathcal{H}} \\ \textbf{broken circuit} = C \smallsetminus \min(C). \end{array}$

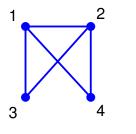
This isomorphism is not canonical. $\Delta_{\mathcal{H}}^{bc}$ depends on the choice of ordering of the hyperplanes, although its Betti numbers do not.

ロト イポト イラト イラト

Hypertoric varieties

Minimal extension sheaves Ring structure on IH

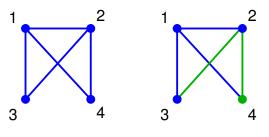
Example



Circuits: {1,2,3}, {1,2,4}, {3,4}

Э

Example

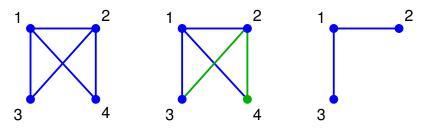


Circuits: $\{1, 2, 3\}$, $\{1, 2, 4\}$, $\{3, 4\}$ Broken circuits: $\{2, 3\}$, $\{2, 4\}$, $\{4\}$

・ 回 ・ ・ ヨ ・ ・ ヨ ・

æ

Example



Circuits: $\{1, 2, 3\}$, $\{1, 2, 4\}$, $\{3, 4\}$ Broken circuits: $\{2, 3\}$, $\{2, 4\}$, $\{4\}$ $\Delta_{\mathcal{H}}^{bc} = \{\{1, 2\}, \{1, 3\}, \{1\}, \{2\}, \{3\}, \varnothing\}.$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Proudfoot and Speyer constructed a Cohen-Macaualay ring $R(\mathcal{H})$ which degenerates to $\mathbb{R}[\Delta_{\mathcal{H}}^{bc}]$ for any choice of ordering:

$$R(\mathcal{H}) = \mathbb{R}[e_1, \ldots, e_n] / \langle \sum_{i \in C} a_i \prod_{j \in C \smallsetminus i} e_j = 0 \rangle$$

where *C* runs over all circuits, and $\sum_{i \in C} a_i v_i = 0$ is a linear dependence among the normal vectors v_i to the hyperplanes H_i . In particular $R(\mathcal{H})$ has the same graded dimension as $\mathbb{R}[\Delta_{\mathcal{H}}^{bc}]$.

Question

Is there a canonical identification $R(\mathcal{H}) \cong IH^{\bullet}_{\mathcal{T}}(\mathfrak{M}_{\mathcal{H}})$?

(4 回) (4 回) (4 回)

Minimal extension sheaves

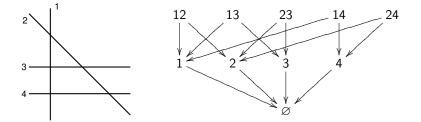
Minimal extension sheaves on fans

(Barthel-Brasselet-Fieseler-Kaup, Bressler-Lunts) give a canonical functorial computation of IH_T of toric varieties. We adapt this formalism to arrangements and hypertoric varieties...

通 とう ほうとう ほうど

Let $L_{\mathcal{H}}$ = the lattice of flats of \mathcal{H} . If \mathcal{H} is simple, this is just the matroid complex $\Delta_{\mathcal{H}}$.

 $E \leq F$ means E lies in *fewer* hyperplanes — E is larger as a subspace of \mathbb{R}^d .

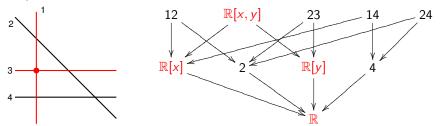


(1日) (1日) (日)

Let $L_{\mathcal{H}}$ = the lattice of flats of \mathcal{H} . If \mathcal{H} is simple, this is just the matroid complex $\Delta_{\mathcal{H}}$.

 $E \leq F$ means E lies in *fewer* hyperplanes — E is larger as a subspace of \mathbb{R}^d .

For any flat F, define $\mathcal{A}(F) = \text{Sym}(N_F)$, where N_F is the normal space to F in \mathbb{R}^d .



・ 同 ト ・ ヨ ト ・ ヨ ト

The quotient maps $\mathcal{A}(F) \to \mathcal{A}(E)$ when $E \leq F$ make \mathcal{H} into a sheaf of graded rings on $\mathcal{L}_{\mathcal{H}}$, with the order topology.

A sheaf \mathcal{M} on $L_{\mathcal{H}}$ is an \mathcal{A} -module if $\mathcal{M}(F)$ is a graded $\mathcal{A}(F)$ -module for each flat F, and the restriction maps are maps of modules.

Definition

An \mathcal{A} -module \mathcal{L} is a minimal extension sheaf if

- 2 $\mathcal{L}(F)$ is a free $\mathcal{A}(F)$ -module for all F
- $\textcircled{O} \mathcal{L} \text{ is flabby} \longrightarrow \text{sections extend upward}$
- \mathcal{L} is minimal with respect to 1, 2, and 3.

Theorem (B.-Proudfoot)

Any two minimal extension sheaves on $L_{\mathcal{H}}$ are canonically isomorphic, up to a scalar.

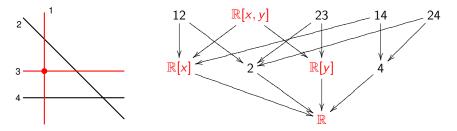
If ${\mathcal H}$ is rational, then there is a canonical isomorphism

 $\mathcal{L}(\mathcal{L}_{\mathcal{H}})\cong IH^{\bullet}_{\mathcal{T}}(\mathfrak{M}_{\mathcal{H}}).$

(4回) (1日) (日)

Example

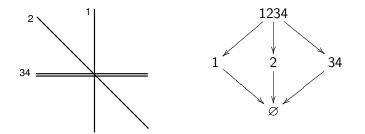
If \mathcal{H} is simple, then \mathcal{A} itself is a minimal extension sheaf. Its global sections are the face ring $\mathbb{R}[\Delta_{\mathcal{H}}]$.



回 と く ヨ と く ヨ と

Another example

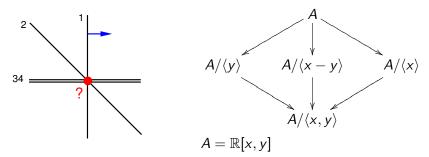
For the central version of our arrangement, \mathcal{A} is not flabby:



白 ト イヨト イヨト

Another example

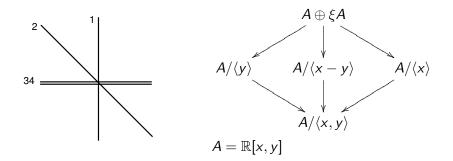
For the central version of our arrangement, \mathcal{A} is not flabby: sections cannot be extended to the point.



- - E > - E

Another example

Adding an extra generator at the point, we get a flabby sheaf:



向下 イヨト イヨト

Localization

The sheaves ${\cal A}$ and ${\cal L}$ come from localizing equivariant cohomology and intersection cohomology

 $\mathfrak{M}_{\mathcal{H}}$ has a stratification $\bigcup_F S_F$ indexed by $L_{\mathcal{H}}$. The *T*-stabilizer is the same for any point $p \in S_F$, and

$$H^{\bullet}_{T}(Tp) \cong \operatorname{Sym}((\mathfrak{t}_{F})^{*}) = \mathcal{A}(F).$$

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Localization

The sheaves ${\cal A}$ and ${\cal L}$ come from localizing equivariant cohomology and intersection cohomology

 $\mathfrak{M}_{\mathcal{H}}$ has a stratification $\bigcup_F S_F$ indexed by $L_{\mathcal{H}}$. The *T*-stabilizer is the same for any point $p \in S_F$, and

$$H^{\bullet}_{T}(Tp) \cong \operatorname{Sym}((\mathfrak{t}_{F})^{*}) = \mathcal{A}(F).$$

 $\mathcal{L}(F)$ is the equivariant IH "stalk" along Tp. If p degenerates from a large stratum S_E to a small one S_F , this induces a map

$$\mathcal{L}(F) \to \mathcal{L}(E)$$

which is the restriction map for the sheaf \mathcal{L} .

・ 同 ト ・ ヨ ト ・ ヨ ト

A normal slice to the stratum S_F in $\mathfrak{M}_{\mathcal{H}}$ is isomorphic to the affine hypertoric variety $\mathfrak{M}_{\mathcal{H}_F}$ defined by the *localization* of \mathcal{H} at F: the central arrangement obtained by restricting to hyperplanes in F and slicing.

Thus we have an isomorphism

$$\mathcal{L}(F) \cong IH^{\bullet}_{T}(\mathfrak{M}_{\mathcal{H}_{F}}) \cong \mathbb{R}[\Delta^{bc}_{\mathcal{H}_{F}}] \cong R(\mathcal{H}_{F}).$$

For flats $E \leq F$, we can define a ring homomorphism $R(\mathcal{H}_F) \rightarrow R(\mathcal{H}_E)$ by setting the variables e_i , $i \in F \setminus E$ to zero. With these maps, $F \mapsto R(\mathcal{H}_F)$ defines an \mathcal{A} -module \mathcal{R} .

Theorem (B.–Proudfoot)

 ${\mathcal R}$ is a minimal extension sheaf.

Corollary

If ${\mathcal H}$ is a rational central arrangement, there is a canonical isomorphism

$$R(\mathcal{H}) = \mathcal{R}(\mathcal{L}_{\mathcal{H}}) \cong IH^{\bullet}_{\mathcal{T}}(\mathfrak{M}_{\mathcal{H}}).$$

In particular, $IH^{\bullet}_{T}(\mathfrak{M}_{\mathcal{H}})$ carries a canonical ring structure.

- 4 回 2 - 4 □ 2 - 4 □

Theorem (B.–Proudfoot)

 ${\mathcal R}$ is a minimal extension sheaf.

Corollary

If ${\mathcal H}$ is a rational central arrangement, there is a canonical isomorphism

$$R(\mathcal{H}) = \mathcal{R}(L_{\mathcal{H}}) \cong IH^{\bullet}_{\mathcal{T}}(\mathfrak{M}_{\mathcal{H}}).$$

In particular, $IH^{\bullet}_{T}(\mathfrak{M}_{\mathcal{H}})$ carries a canonical ring structure.

How can we understand this ring structure?

イロト イヨト イヨト イヨト

Theorem (B.–Proudfoot)

If \mathcal{H} is unimodular, then the equivariant IC sheaf $\mathbf{IC}_{\mathcal{T}}(\mathfrak{M}_{\mathcal{H}})$ can be made into a ring object in the equivariant derived category $D^b_{\mathcal{T}}(\mathcal{H})$ by a multiplication map

$$\mathsf{IC}_{\mathcal{T}}(\mathfrak{M}_{\mathcal{H}})\otimes\mathsf{IC}_{\mathcal{T}}(\mathfrak{M}_{\mathcal{H}})\to\mathsf{IC}_{\mathcal{T}}(\mathfrak{M}_{\mathcal{H}}).$$

This ring structure is unique, and it induces our ring structure on $IH^{\bullet}_{T}(\mathfrak{M}_{\mathcal{H}})$.

This implies that the ring structure respects a number of other functorial maps besides the restrictions in the sheaf \mathcal{R} . For instance, restriction to the open stratum S_{\emptyset} gives a ring homomorphism

$$R(\mathcal{H}) = IH^{\bullet}_{T}(\mathfrak{M}_{\mathcal{H}}) \to H^{\bullet}_{T}(S_{\varnothing}).$$

Why is unimodularity needed?

The unimodularity hypothesis is puzzling. The sheaf \mathcal{R} makes sense, gives a minimal extension sheaf, and has the "right" Betti numbers even if \mathcal{H} is not unimodular, or even not rational.

But there is an isomorphism of rings:

$$H^{\bullet}_{T}(S_{\varnothing}) \cong \mathbb{R}[e_{1},\ldots,e_{n}]/\langle e_{1}^{2},\ldots,e_{n}^{2}\rangle + \langle \sum_{i\in C} \operatorname{sgn}(a_{i}) \prod_{j\in C\smallsetminus i} e_{j} = 0 \rangle.$$

伺下 イヨト イヨト

Why is unimodularity needed?

The unimodularity hypothesis is puzzling. The sheaf \mathcal{R} makes sense, gives a minimal extension sheaf, and has the "right" Betti numbers even if \mathcal{H} is not unimodular, or even not rational.

But there is an isomorphism of rings:

$$H^{\bullet}_{T}(S_{\varnothing}) \cong \mathbb{R}[e_{1},\ldots,e_{n}]/\langle e_{1}^{2},\ldots,e_{n}^{2}\rangle + \langle \sum_{i\in C} \operatorname{sgn}(a_{i}) \prod_{j\in C\smallsetminus i} e_{j} = 0 \rangle.$$

If \mathcal{H} is unimodular, then $sgn(a_i) = a_i$, so this matches up with

$$R(\mathcal{H}) = \mathbb{R}[e_1, \ldots, e_n] / \langle \sum_{i \in C} a_i \prod_{j \in C \setminus i} e_j = 0 \rangle.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Wild speculation

Could there be some sort of "orbifold corrections" when \mathcal{H} is rational but not unimodular which make a topological description of our ring structure possible?

白 ト イヨト イヨト