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To a rational hyperplane arrangement H in Rd , associate a
Hypertoric variety MH.

dimC MH = 2d , torus T = (C∗)d
acts

Rationally smooth ⇐⇒ H is
simple

Smooth ⇐⇒ H is simple and
unimodular.

Never compact
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The toric varieties XP whose moment polyhedra are the chambers
of H are Lagrangian subvarieties of MH.

If MH is smooth, then every XP is smooth, and MH =
⋃

P T ∗XP .
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If H is central, then MH is affine. If H̃ is a simplification of H,
there is a map M eH → MH which is an (orbifold) resolution of
singularities.

→
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Equivariant cohomology

If H = {H1, . . . ,Hn} is simple, ∃ canonical ring isomorphism

H•
T (MH) = R[e1, . . . , en]/〈

∏
i∈S

ei |
⋂
i∈S

Hi = ∅〉.

This is the face ring R[∆H] of the matroid complex of H.

4

3

1

2 H•
T (MH) = R[e1, e2, e3, e4] /〈e1e2e3, e1e2e4, e3e4〉

∆H :
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IH Betti numbers

Theorem (Proudfoot-Webster ’04)

If H is central, then there is an isomorphism

IH•
T (MH) ∼= R[∆bc

H ]

of H•
T (pt)-modules.

∆bc
H = “broken circuit complex”

= simplices of ∆H containing no broken circuit.
circuit = minimal non-face C of ∆H
broken circuit = C r min(C ).

This isomorphism is not canonical. ∆bc
H depends on the choice of

ordering of the hyperplanes, although its Betti numbers do not.
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Example

2

3

1

4

Circuits: {1, 2, 3}, {1, 2, 4}, {3, 4}

Broken circuits: {2, 3}, {2, 4}, {4}

∆bc
H = {{1, 2}, {1, 3}, {1}, {2}, {3}, ∅}.
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Proudfoot and Speyer constructed a Cohen-Macaualay ring R(H)
which degenerates to R[∆bc

H ] for any choice of ordering:

R(H) = R[e1, . . . , en]/〈
∑
i∈C

ai

∏
j∈Cri

ej = 0〉

where C runs over all circuits, and
∑

i∈C aivi = 0 is a linear
dependence among the normal vectors vi to the hyperplanes Hi .
In particular R(H) has the same graded dimension as R[∆bc

H ].

Question

Is there a canonical identification R(H) ∼= IH•
T (MH)?
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Minimal extension sheaves

Minimal extension sheaves on fans
(Barthel-Brasselet-Fieseler-Kaup, Bressler-Lunts) give a canonical
functorial computation of IHT of toric varieties. We adapt this
formalism to arrangements and hypertoric varieties...
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Let LH = the lattice of flats of H. If H is simple, this is just the
matroid complex ∆H.

E ≤ F means E lies in fewer hyperplanes — E is larger as a
subspace of Rd .

For any flat F , define A(F ) = Sym(NF ), where NF is the normal
space to F in Rd .
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The quotient maps A(F ) → A(E ) when E ≤ F make H into a
sheaf of graded rings on LH, with the order topology.

A sheaf M on LH is an A-module if M(F ) is a graded
A(F )-module for each flat F , and the restriction maps are maps of
modules.

Definition

An A-module L is a minimal extension sheaf if

1 L(∅) = A(∅) = R
2 L(F ) is a free A(F )-module for all F

3 L is flabby — sections extend upward

4 L is minimal with respect to 1, 2, and 3.
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Theorem (B.-Proudfoot)

Any two minimal extension sheaves on LH are canonically
isomorphic, up to a scalar.

If H is rational, then there is a canonical isomorphism

L(LH) ∼= IH•
T (MH).
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Example

If H is simple, then A itself is a minimal extension sheaf. Its global
sections are the face ring R[∆H].
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Another example

For the central version of our arrangement, A is not flabby:

sections cannot be extended to the point.
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A = R[x , y ]
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Another example
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Another example

Adding an extra generator at the point, we get a flabby sheaf:

sections cannot be extended to the point.
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Localization

The sheaves A and L come from localizing equivariant
cohomology and intersection cohomology

MH has a stratification
⋃

F SF indexed by LH. The T -stabilizer is

the same for any point p ∈ SF , and

H•
T (Tp) ∼= Sym((tF )∗) = A(F ).

L(F ) is the equivariant IH “stalk” along Tp. If p degenerates from
a large stratum SE to a small one SF , this induces a map

L(F ) → L(E )

which is the restriction map for the sheaf L.

Tom Braden and Nicholas Proudfoot Ring structure on IH of hypertoric varieties



Hypertoric varieties
Minimal extension sheaves

Ring structure on IH

Localization

The sheaves A and L come from localizing equivariant
cohomology and intersection cohomology

MH has a stratification
⋃

F SF indexed by LH. The T -stabilizer is

the same for any point p ∈ SF , and

H•
T (Tp) ∼= Sym((tF )∗) = A(F ).

L(F ) is the equivariant IH “stalk” along Tp. If p degenerates from
a large stratum SE to a small one SF , this induces a map

L(F ) → L(E )

which is the restriction map for the sheaf L.

Tom Braden and Nicholas Proudfoot Ring structure on IH of hypertoric varieties



Hypertoric varieties
Minimal extension sheaves

Ring structure on IH

A normal slice to the stratum SF in MH is isomorphic to the affine
hypertoric variety MHF

defined by the localization of H at F : the
central arrangement obtained by restricting to hyperplanes in F
and slicing.

Thus we have an isomorphism

L(F ) ∼= IH•
T (MHF

) ∼= R[∆bc
HF

] ∼= R(HF ).

For flats E ≤ F , we can define a ring homomorphism
R(HF ) → R(HE ) by setting the variables ei , i ∈ F \ E to zero.

With these maps, F 7→ R(HF ) defines an A-module R.
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Theorem (B.–Proudfoot)

R is a minimal extension sheaf.

Corollary

If H is a rational central arrangement, there is a canonical
isomorphism

R(H) = R(LH) ∼= IH•
T (MH).

In particular, IH•
T (MH) carries a canonical ring structure.

How can we understand this ring structure?
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Theorem (B.–Proudfoot)

If H is unimodular, then the equivariant IC sheaf ICT (MH) can be
made into a ring object in the equivariant derived category Db

T (H)
by a multiplication map

ICT (MH)⊗ ICT (MH) → ICT (MH).

This ring structure is unique, and it induces our ring structure on
IH•

T (MH).

This implies that the ring structure respects a number of other
functorial maps besides the restrictions in the sheaf R. For
instance, restriction to the open stratum S∅ gives a ring
homomorphism

R(H) = IH•
T (MH) → H•

T (S∅).
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Why is unimodularity needed?

The unimodularity hypothesis is puzzling. The sheaf R makes
sense, gives a minimal extension sheaf, and has the “right” Betti
numbers even if H is not unimodular, or even not rational.

But there is an isomorphism of rings:

H•
T (S∅) ∼= R[e1, . . . , en]/〈e2

1 , . . . , e2
n〉+ 〈

∑
i∈C

sgn(ai )
∏

j∈Cri

ej = 0〉.

If H is unimodular, then sgn(ai ) = ai , so this matches up with

R(H) = R[e1, . . . , en]/〈
∑
i∈C

ai

∏
j∈Cri

ej = 0〉.

Tom Braden and Nicholas Proudfoot Ring structure on IH of hypertoric varieties



Hypertoric varieties
Minimal extension sheaves

Ring structure on IH

Why is unimodularity needed?

The unimodularity hypothesis is puzzling. The sheaf R makes
sense, gives a minimal extension sheaf, and has the “right” Betti
numbers even if H is not unimodular, or even not rational.

But there is an isomorphism of rings:

H•
T (S∅) ∼= R[e1, . . . , en]/〈e2

1 , . . . , e2
n〉+ 〈

∑
i∈C

sgn(ai )
∏

j∈Cri

ej = 0〉.

If H is unimodular, then sgn(ai ) = ai , so this matches up with

R(H) = R[e1, . . . , en]/〈
∑
i∈C

ai

∏
j∈Cri

ej = 0〉.

Tom Braden and Nicholas Proudfoot Ring structure on IH of hypertoric varieties



Hypertoric varieties
Minimal extension sheaves

Ring structure on IH

Wild speculation

Could there be some sort of “orbifold corrections” when H is
rational but not unimodular which make a topological description
of our ring structure possible?
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