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Lecture 2

Recap

Last time we talked about presheaves and sheaves.

Presheaf : F on a topological space X, with groups (resp. rings, sets, etc.) F(U) for each open set
U ⊂ X, with restriction homs ρUV : F(U) → F(V ) for all open V ⊂ U , satisfying certain conditions
(ρUU = idU , ρUW = ρVWρUV ,F(∅) = 0).

Sheaf : In addition, we also require identity and gluing.

Identity: Given U = ∪Ui, s ∈ F(U) s.t. s|Ui
= 0 ∀i, then s = 0. (locally zero everywhere ⇒ zero)

Gluing: Given si ∈ F(Ui) s.t. si|Ui∩Uj
= sj |Ui∩Uj

∀i, j, then ∃s ∈ F(U) with s|Ui
= si. (suffices to

give a function locally, agreeing on overlaps)

Remark: F(∅) = 0 is not implied by either the presheaf conditions, nor by considering presheaves
as a contravariant functor Op(X)→Ab. It is applied axiomatically by convention. For sheaves, it is
implied by gluing (e.g. consider a cover of the empty set). Moral: don’t worry about it.

Morphisms of (Pre)sheaves: φ : F → G. A series of morphisms φ(U) : F(U) → G(U) for every
open set U , that commute with restriction maps:

F(U) G(U)

F(V ) G(V )

φ(U)

ρ ρ

φ(V )

	

A morphism is an isomorphism if it has an inverse.

Stalks: Fp = lim−→
p∈U
F(U) =

∐
F(U)/ ∼ = {(s, U)|s ∈ F(U)}/ ∼, where (s, U) ∼ (s′, U ′) if ∃V ⊂ U ∪U ′

such that s|V = s′|V .

More sheaves

Stalks package most of the information we want. A morphism of (pre)sheaves φ : F → G induces
a homomorphism on stalks, φp : Fp → Gp, i.e. φp(s, U) = (φ(U)s, U). This is well-defined, for if
(s, U) = (s′, U ′), then because φ commutes with restrictions, φp(s, U) = φp(s

′, U ′). This gives another
characterization of isomorphisms.

Proposition. (H, Prop.II.1.1): Let F → G be a morphism of sheaves. Then φ is an isomorphism if
and only if φp is an isomorphism ∀p ∈ X.

Sheafification: Every presheaf has an associated sheaf. Given a presheaf F , we define a sheaf F+

called the sheafification of F , as follows:

F+(U) = {functions s : U →
∐
Fp | s(p) ∈ Fp, and ∀p ∈ U, ∃V with p ∈ V ⊂ U and t ∈ F(V )

such that s(q) = tq ∀q ∈ V, where tq = (t, V ) ∈ Fq}

These are functions which map into the disjoint union of the stalks, where we require that p is mapped
into the stalk at p, and locally the choices of stalks are related. Usually presheaves fail to be sheaves
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when they don’t satisfy the gluing axiom. The + construction fixes this by adding in enough elements
to allow gluing.

Exercise:

1. F+ is a sheaf.

2. There is a natural morphism of presheaves θ : F → F+ such that s ∈ F(U) 7→ s+ : U →
∐
Fp,

with s+(p) = sp = (s, U).

3. Universal property. For any sheaf F and a morphism of presheaves φ : F → G there exists a
unique ψ : F+ → G such that:

F F+

G

∃!ψ

F+ is the simplest possible sheaf we could associate to F . The + construction is useful because
sometimes when we do an operation on a sheaf, we only get a presheaf, so then we need to sheafify.

Definition: Let φ : F → G be a morphism of (pre)sheaves.
The presheaf kernel of φ is U 7→ kerφ(U)
The presheaf cokernel of φ is U 7→ coker φ(U) = G(U)/φ(U)
The presheaf image of φ is U 7→ φ(U)

Each of the φ(U) are group homomorphisms, so it makes sense to talk about kernels, etc. These are
subpresheaves of F (for kerφ) or G (for the other two).

If F and G are sheaves, then presheaf kernel is in fact a sheaf (check this!), and the sheaf kernel (kerφ)
is defined as this. But the sheaf cokernel (coker φ) and sheaf image (im φ) are the sheafifications of
the presheaf cokernel and images. Surjectivity doesn’t mean what you think it does.

We say φ : F → G is injective if kerφ = 0.
We say φ : F → G is surjective if im φ = G.

Affine Schemes

From now on, R will always be a commutative ring with identity (not necessarily Noetherian).

To talk about geometry, we need a topological space and a notion of functions. Sheaves give us a way
of talking about functions.

Definition: An affine scheme, Spec R, is a topological space, with a sheaf of rings OSpecR, its structure
sheaf.

Examples to keep in mind when thinking about these definitions: i) think of R as a coordinate ring
of a variety - or even k[x1, ..., xn]; ii) think of R as the most pathological example imaginable.

A sheaf of rings means a sheaf where OSpecR(U) is a ring ∀ open U and the homs are ring homs.

The topological space Spec R is the set of all prime ideals in R. We place the Zariski topology on
Spec R : the closed sets are V (I) = {P : P ≥ I} for an ideal I ≤ R.

(Check!) This is a topology. V (I ∩ J) = V (I)∪ V (J) and V (I + J) = V (I)∩ V (J). Proof is the same
as for varieties.

Examples:



3

1. R = Z. Spec Z = {0} ∪ pZ, p prime.

V((2)) V((3)) V((5)) V((7))

[(0)] generic point

Notice we have closed points (e.g. 2, 3, 5,...) and not closed points (0, whose closure is Spec Z
because 0 ∈ (p),∀(p)).

2. R = k[x]. The prime ideals are (f), f irreducible. If k = k, then Spec R = (0), (x − a), a ∈ k.
(x − a) are the closed points; naively they look like A1. We also have the generic point (0). If
k = R, then Spec R = (0), (x − a), and (x2 + ax + b) such that a2 − 4b < 0. Again the (x − a)
and (x2 + ax+ b) are closed points, and the closure of (0) is Spec R. If k = Z/2Z, then Spec R
is infinite = (0), (x), (x+ 1), (x2 + x+ 1), .... Again (0) is a generic point, the others are closed.
Observe that A1 here is not a two point set, as might be expected. The space remembers the
orbits of points over the algebraic closure.

3. R = k[x1, ..., xn], k = k. If (0) is prime (integral domain) it will always be dense. (x1−a1, ..., xn−
an) are closed points (0satz). Any irreducible subvariety of An corresponds to a prime ideal.
The closure of a such a prime contains all the points on it.

The sheaf of rings. To give the sheaf of rings on our topological space, we make use of a basis for
the topology. For any f ∈ R, we have the basic open set D(f) = {P ∈ SpecR : f /∈ P}. The set of
all D(f) forms a basis for the Zariski topology. (cf. HW1 Q4) Given a sheaf we can recover it by just
knowing it on a basis. We’ll define the structure sheaf OSpecR by defining it on the basis, i.e. we’ll
give a ring for every D(f) such that it gives a sheaf on the base (check restrictions, id, gluing).

Define: OSpecR(D(f)) = Rf .

Rf is R localized at the multiplicatively closed set (a set closed under products, including the empty

product 1) {1, f, f2, ...}. That is, Rf = { r
fm |r ∈ R,m ≥ 0}/ ∼, where r

fm ∼
r′

fn if ∃j such that

f j(fnr − fmr′) = 0. It’s like fractions, but a more general equivalence relation to take care of zero
divisors.

In particular, if f = 1, OSpecR(D(1)) = R, called the global sections. In the case R is the coordinate
ring of a variety, the polynomial functions on a variety, then in a naive variety sense, D(f) is the set
of points where f is nonzero, so rational functions with f in the denominator are still well-defined
functions on the variety.

Now we want to check this definition actually gives us a sheaf on the base. For this we start with a
couple of commutative algebra results.

Lemma. If I is an ideal of R disjoint from a multiplicatively closed set U , then an ideal P , maximal
with respect to containing I and disjoint from U , is prime.

Proof. If f, g /∈ P , then P + (f), P + (g) are larger ideals containing I, so ∃u1 ∈ P + (f), u2 ∈ P + (g),
with u1, u2 ∈ U. So, u1 = p1 + r1f, u2 = p2 + r2g. Since u1u2 /∈ P , then fg /∈ P.

Corollary. If D(f) ⊆ D(g), then ∃m > 0 such that fm ∈ (g).

Proof. If not, (g) is disjoint from U = {1, f, f2, ...} so by the lemma ∃P ∈ D(f) \D(g).
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Thus, if D(f) ⊆ D(g), we have fm = gr for some r, so we have a homomorphism

Rg → Rf ,
a

gn
7→ arn

gnrn
=

arn

fmn

so restriction is straightforward. When D(f) ⊆ D(g) ⊆ D(h), this satisfies

Rh Rf

Rg

This is a ’presheaf on the base’. We now check this presheaf is a sheaf on the base, that it satifies
identity and gluing.

Suppose now that we have an open cover D(f) =
⋃
i∈I D(fi).

First, we claim that ∃m > 0 such that fm ∈ (fi, i ∈ I). Otherwise, the lemma gives P ≥ (fi)
avoiding U = {1, f, f2, ...}, which is a contradiction. Also, as before, since D(fi) ⊆ D(f), we can write
fmi
i = fri for some mi, ri ∀i ∈ I.

Identity: (section vanishes if all its restrictions do). Suppose a/fn ∈ Rf satisfies arni /f
min
i = 0

1 ∈
Rfi ∀i. Then ∃Ni such that fNi

i arni = 0. So 0 = fnfNi
i arni = fNi+min

i a.

Since fm ∈ (fi, i ∈ I), then for some N � 0, fN ∈ (fNi+min
i , i ∈ I). So fN =

∑
bif

Ni+min
i for some

bi ∈ R.

Then fNa =
∑
bif

Ni+min
i a = 0 and a/fn = 0/1 in Rf .

Gluing: (Given sections of D(fi) agreeing on overlaps, can construct a section of D(f)). Notice that
our open cover D(f) =

⋃
i∈I D(fi) may be assumed finite , although we haven’t made any assumptions

about Noetherianness of rings. Elements of ideals are only finite sums, fm =
∑

i∈J bifi, |J | <∞. This
implies D(f) =

⋃
i∈J D(fi), because any prime not containing fm, and therefore f , must omit one of

the fi, i ∈ J . Every cover does have a finite subcover (’quasi-compactness’); but we will see later that
properness is a more useful generalization of compactness.

Claim: It suffices to check gluing only on finite covers. Suppose we are given si = ai
f
ni
i

∈ Rfi ,∀i ∈ I

with
aif

ni
j

(fifj)ni
=

ajf
nj
i

(fifj)
nj ∈ Rfifj . It then suffices to show there is s ∈ Rf with s|D(fi) = si,∀i ∈ J .

Identity will imply s|D(fi) = si,∀i ∈ I (think about this). (claim)

The finite cover enables us to take a maximum over the exponents that show up.

Since si|D(fi)∩D(fj) = sj |D(fi)∩D(fj),∀i, j ∈ J, ∃Ñ such that (fifj)
Ñ (f

nj

j ai − fni
i aj) = 0 in R. We

use finiteness here - for pairs, we can make fractions have the same denominator, so assume all pairs
have the same denominator. Then since J is finite, renaming ai’s if necessary, we may assume that
ni = nj = N, ∀i, j and Ñ = 0, i.e. fNj ai − fNi aj = 0 in R.

We can write fm =
∑

i∈J cif
N
i for some m� 0, and set g =

∑
i∈J ciai.

We claim g
fm |D(fi) = si.

Indeed fNi g =
∑

j∈J f
N
i cjaj =

∑
j∈J cjaif

N
j = aif

m, and so (recall fmi
i = fri)

g
fm |D(fi) =

grmi
f
mim
i

|D(fi) = ai
fNi

= si. So we have gluing.

We have now shown that we do have a sheaf on the base.

We could also have done this another way. The approach in H is to give the following definition,
and this is then proved to be the same as the way we defined it using a base. We will discuss this
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further next time. Also, recall that the localization at a prime ideal Rp is defined with R \ p as the
multiplicatively closed set .

Proposition.

a) The stalk (OSpecR)p of (OSpecR) at p is the localization Rp.

b) (OSpecR)(U) is the functions

{s : U →
∐

Rp| s(p) ∈ Rp; and ∀p ∈ U,∃V ⊆ Uand a, f ∈ R,

such that ∀Q ∈ V and f /∈ Q, s(Q) = a/f ∈ Rq}


