TCC Hilbert schemes and Moduli Spaces

Vevox app 187-439-064
no lecture next week (I november) Possibly also ot 8 november.
Clorficution for a moduli functor $F:$ Schemes \rightarrow Sets with $f(B)=\left\{\begin{array}{c}\text { Comes over } \\ \text { B st }\end{array}\right\}$ For $\varphi: B \rightarrow B^{\prime} F(Q): F\left(B^{\prime}\right) \rightarrow f(B)$
is (surly) pullback
$\varphi, B \rightarrow B^{\prime} \quad F(\varphi)\left(\begin{array}{l}y \\ \vdots \\ B^{\prime}\end{array}\right)=\left(\begin{array}{ccc}\varphi^{0} Y \\ \vdots \\ B\end{array}\right) \quad \begin{array}{rl}\varphi^{\prime} Y & y \\ \downarrow & \\ B & \rightarrow B^{\prime}\end{array}$
Today Construction of the Hilbert scheme
Recall Hill $\left(\mathbb{P}^{n}\right)(B)=\left\{\begin{array}{l}\text { foot families ar } \\ B \text { of subschenes }\end{array}\right.$ of \mathbb{P}_{B}^{n} with Willet poly of fibres\} ~ equal to P
We want to show this is representable.

Key idea Find a degree Di depending
ont on P with only on P with

1) Every satwated ideal I wt Hilbert polynomial P is generated in degree of most D, so $I_{\geqslant D}=\left\langle I_{D}\right\rangle$
2) If I is anideal geserted in degree D and has $L_{I}(d)=p(d)$ for $d=D, D+1$, then I has Hill ply. Consider $\left.I_{D} \in \operatorname{Cor}\left(\binom{n+D}{n}-P(D), S_{j}\right)^{k(x,}, x_{D}\right]$

We then get Hit $\left(P^{n}\right)$ as a subschene of $\operatorname{Cr}\left(\binom{n+1}{0}-P(D),\binom{n+D}{n}\right)$ with equations coming from checking that < I_{D} > has the correct tibet fun is degree Dts.

Costel nuovo-mumford regularty
This is an inverant of $z \subseteq \mathbb{P}^{n}$ intreduced by mumford
Defin Let Z be a subschere of $\mathbb{P n}$.
The reyularty of z is (exsts vy $\begin{gathered}\text { serevining) }\end{gathered}$

$$
\begin{array}{r}
\operatorname{reg}(z)=\min \left\{j: \begin{array}{ll}
H^{j}\left(P^{j}, \theta_{z}(l-i)=0\right. \\
& \text { for all } l \geqslant j, i \infty
\end{array}\right\}
\end{array}
$$

eometic
def.
sheak cohondegy

Algebraic defor
If $I \subseteq K\left[x_{0}, \cdots i x n\right]$ is the hancyenears sorturated ideal correspending to Z,

$$
\begin{aligned}
& \left.\operatorname{reg}(z)=\operatorname{reg}\left(\frac{S}{I}\right)=\min \right\} j: H_{m}^{i}\left(\frac{S}{I}\right)_{p}=0
\end{aligned}
$$

$$
\begin{aligned}
& =\max _{i, j}\left(\beta_{i j}-i\right)
\end{aligned}
$$

whe $O \leftarrow \frac{S_{I}}{T} \leftarrow F_{0} \leftarrow, \ldots \in F_{s} \in 0$ is The mininial free s where $f=\oplus S(-\beta i)$ shea gradig resoluten of $\frac{5}{3}$ wher $f_{i}=\oplus S\left(-\beta_{i j}\right)$ Stalt $_{3}=S_{\mathrm{ta}}$
keyfacts 1) The Bis are the degrees of generators of I, so since

$$
\operatorname{reg}\left(S_{I}\right)=\max \left(\beta_{i j}-i\right) \geqslant \beta_{i j}-1
$$

reg $\left(S_{S}\right)+1$ is an upper band for the degrees of generator of I.
2) (If I is saturated), then $h_{I}(d)=P_{I}(d)$ for $d \geqslant \operatorname{reg}\left(\frac{s}{j}\right)+1$.
We will give a lenform band on the regularity of all saturated ideal with Hilbert polynomial P

Sample questions Is there a subschere $Z \leq \mathbb{P}^{n}$ with Hilbert polynomial t^{2} for some $\|^{n}$?
Theorem (Macaulay)
The Hilbert pelyroms of a hamageneaus ideal $I \leq \frac{K}{D}\left[x_{\infty}, x_{n}\right]$ can be written as

$$
p(t)=\sum_{i=1}^{D}\binom{t+a_{i}-i+1}{a_{i}}=\binom{t+a_{1}}{a_{1}}+\binom{t+a_{2}-1}{a_{2}}+\cdots
$$

were $a_{1} \geqslant a_{2} \geqslant a_{3} \geqslant \geqslant a_{D} \geqslant 0$

$$
\binom{t+2}{2}=\frac{1}{2}(t+2)(t+1)
$$

$$
p(t)=\sum_{i=1}^{D}\binom{t+a_{i}-i+1}{a_{i}}
$$

So no for t^{2} !. $\quad\binom{t+a_{i}-i+1}{a_{i}}$ has degree a_{i}.
So must have $a_{1}=2$. $t^{2}-\binom{t+2}{2}$ has degree d^{2}, so $a_{2}=2$, but $\binom{t+2}{2}+\binom{t+1}{2}=(t+1)^{2} \geqslant t^{2}$ so cant keep gang $H_{\text {lib }} \mathrm{f}_{2}\left(\mathbb{1}^{n}\right)=\varnothing$ for all n.

Theorem cent If J is a homogeneous \therefore deal with $h J(d)=p(d)$, then

$$
\operatorname{m}_{y}(d+1) \leqslant p(d+1)
$$

"Hilbert fun cant grow Fuster than Hill poly'
The expression for the tibet polyramul comes from considering the lexicographic ideal

Define $x^{u}<x^{\underline{u}}$ if the first nonzere arty $x_{0}^{u_{c} x_{1}} x_{n}^{u_{2}}$ of $\underline{v}-\underline{u}$ is positive.

$$
x_{0}>x_{1}>x_{2}>\cdots, \quad x_{1}^{2}>x_{2}^{3}
$$

The lexicegruphuc ideal with Hilbert function h is the monomial ideal with $I_{\text {lex }} \quad h(d)=\operatorname{din}\left(S_{S}\right) d$

Ism $_{\text {Id }} \rightarrow\binom{n+d}{d}-h(d)$ monomial wit $<$ Macaulay proves this always exists $S,\left(I_{\text {alex }}\right) d\left(I_{\text {bes }}\right)$

Theorem (Gotzmanr)
Let $\left.I \subseteq k\left[x_{0}, x_{n}\right]\right]$ be a homegerears ideal, sutwated with respect to $\left\langle x_{0}, x_{n}\right)$. Wite $p_{I}(t)=\sum_{i=1}^{D}\binom{t+a_{i}-i+1}{a_{i}} \begin{aligned} & \text { with } \\ & a_{1} \geqslant a_{2} \geqslant \ldots\end{aligned}$
Then reg $\left(\frac{5}{I}\right) \leqslant D-1$. $\geqslant 0,0$
In particular, I is generated in dey $\leqslant \square$
computable uniform bound on regularity for all saturated ideal with Hilbert poly P.

Consequence all saturated ideals with Hilbert polynomial P are generated in degree $\leqslant D \quad$ (so $I_{\geqslant D}=\left\langle I_{D}\right\rangle$) and $L_{I}(d)=p_{I}(d)$ for $d \geqslant D$

$$
\cdots I_{D} \in \operatorname{Gr}\left(\binom{n+D}{D}-p(D), S_{D}\right)
$$

The number D is called $\operatorname{din}\binom{n+D}{n}$ the Cuotzman number of P.

Theoren (Cutzmann) Persistence
thm
Let P be a Hibbet polynomal.
If I is a homegerears icleal with $h_{I}(d)=p(d)$ and $h_{I}(d+1)=p(d+1)$
then $h_{I}(m)=p(m)$ for $m \geqslant d$, so I has Hiblet polyromial p.
we wlll apply this for $d=D$.
\Rightarrow (I: $<x_{0}, x_{n} S^{\infty}$) has Hiblert pdynomial P, so is gerested in legrees $\leqslant D$, so $I_{>D D}=\left(I:\left(x_{c}, x_{n}^{x}\right)_{3 D}\right.$

So we have a bijection between
\therefore homogeneous satwated ideals in $\left.K\left[x_{x}, x_{n}\right]\right\}$ with ltibert ply P
and
Sots $p \in \operatorname{Cur}\left(\binom{n+D}{n}-p(D), S_{D}\right)$ for scan gen by $<p$ has Hilbert fun

$$
h_{\langle D\rangle}(D)=p(D), h_{\langle p\rangle}(D+l)=p(D+1) .
$$

attends in a natural way to R replacing

Sots $\left.p \in G r\binom{(\alpha D)}{0}-p(D),\binom{(N+D}{0}\right)$ fo which $\langle p\rangle$ has l tibet for $p(D)$ in day D $P(D+1)$ in dey $D+1$)
note If I is generated in degree D, $I_{D+1}=S_{1} I_{D}$, so $h_{I}(D+1)=P(D+1)$ ifs $\quad \operatorname{din}_{k} S_{1} I_{D}=\binom{n+D+1}{D}-p(D+1)$ maconlang the says $L_{I}(D+1)<p(D+1)$ So $\operatorname{din} S_{k} T_{0} \geqslant\binom{ n+D+1}{n}-p(D+1)$.
$\operatorname{dim}_{k} S, I_{D} \geqslant\binom{ n+D+1}{n}-p(D+1)$
So F we want $d_{i=} S_{1} I_{0}=\binom{n+D+1}{n}-p\left(D_{+1}\right)$
we only need to check \leqslant
This is a determinatal condition:
We form the matrix whose row space bur fores a basis for SI ID a st all A has mines of size $\underbrace{\text { A wife }}_{1}\binom{n+D+1}{n}^{z}-p(D+1)+1$ equal to all $(x+1) \times(+x))$ zero. miners we zoo

Example Let $n=1, p(t)=2:\binom{2+6}{0}+\binom{2-1+0}{0}$
The Cotzmann number is 2 , but $a_{1}=a_{2}=0$ we will use $D=3$ to illustrate thus better $\operatorname{dim}_{k} k\left[x_{0}, x\right]_{3}=4$, so are looking for a bous in Ger (2,4)t coords P Pm'
To make things simpler, weill monomials of work w th the affine chart $P_{x_{0}^{3}}, x_{0}^{2} x_{1} \neq 0$.

On ideal in this chaos hos the form $<^{f} x_{0}^{3}+a x_{c} x_{1}^{2}+b x_{1}^{3}$,

$$
\left.9 x_{0}^{2} x_{1}+c x_{c} x_{1}^{2}+d x_{1}^{3}\right)
$$

The degree 4 port of this ideal "is" the row space of the matin

$$
\begin{aligned}
& \text { pace } \\
& x_{0} \\
& x_{0} \\
& x_{1} f\left(\begin{array}{ccccc}
x_{0} & m_{2}^{3} & m_{0} x_{1}^{2} & x_{1} \\
x_{0} \\
0 & 0 & a & x_{1} & x_{1}^{4} \\
0 & 1 & 0 & a & 0 \\
0 & 1 & c & d & 0 \\
0 & 0 & 1 & c & d
\end{array}\right)
\end{aligned}
$$

we wat

$$
\operatorname{sim}_{k} S_{1} I_{3} \leqslant\binom{ n+1}{n}-p(0+1)
$$

$$
=5-2=3
$$

So we wat all 4×4 miners to vanish

These mince generate the ideal

$$
\left\langle b+c d, a+c^{2}-d\right\rangle
$$

so the subschere in tho affine chat is \mathbb{A}^{2}.
of Hill $_{2}\left(\mathbb{P}^{1}\right)=\mathbb{P}^{2}$, as $2 p^{\text {ts }}$ in $\left(P^{1}\right.$ is a hypersurface, cut at by the eat of degree 2

