TCE Hilbert schemes and moduli spaces
Email to get on mailing list
D.maclagun@ warwick.ac.uk

If taking for crest, email re your exercise (or discuss alternatives this week) vevox.app session id: 193-254-813 Office hours: Friday@ Rpm (in this call)

Today: Universal family, then introduce the Hilbert function
Review Q moduli functor $F:$ Schemes \rightarrow Sets sends a scheme B to the set of families of objects beng parumoterkel, modulo some equivalent relation (equality,
a scheme X is a fine moduli space ishim)
for this moduli prole if X represents F ie, $F \simeq h_{x}=\operatorname{mor}(-, x)$.
x is unique, if t exists,
functor of l? by Yonedus lemma.
eg for the Grassmannan we have the moduli functor
$B \longmapsto\left\{\begin{array}{l}\text { subsheaves } \mathcal{F} \subseteq \bigoplus_{B}^{n} \text { that are } \\ \text { vocally free }\end{array}\right.$
locally free summands of rank r ?
Restricted to $B=\sec (R)$
 locally free direct summand of
$R=K$ a field $m \subseteq K^{n}$ is a locally free directsumnad of rank r
\Leftrightarrow subspace of dim r

Universal family
The property that X is a fine moduli space For a functor F is equivalent to the definition of a universal family
$\pi: U \rightarrow X$ with the property that whenever $\Psi: Y \rightarrow B$ is a family of the required form $(\psi \in F(B))$ there is a unique morphism $\phi: B \rightarrow X$ st $\mu_{x} B$
 pull back property)
If $\pi: U \rightarrow X$ is a universal family, for each B we get a function $\alpha_{B}: F(B) \longrightarrow H_{c_{m}}(B, X)$ This is the data of a natural trans. $\left(C_{x}\right.$? $)$ and is an isomorphuon, so X represents f.
eg The universal fundy of \mathbb{P}^{2} is

$$
\begin{gathered}
u=\left\{\left[x_{0}: x_{1}: x_{2}\right],\left(y_{0}, y_{1}, y_{2}\right) \in \mathbb{P}^{2} \times A^{3}:\right. \\
\left.r k\left(\begin{array}{l}
x_{0} \\
y_{1} \\
y_{1}
\end{array} x_{2}, y_{2}\right)=1\right\}
\end{gathered}
$$

2×2 minds are zero
The map $\pi: U \rightarrow \mathbb{P}^{2}$ is prgection canto the Grist factor. and the fibre over a pt $[x] \in \mathcal{P}^{2}$ is the he through the algin spanned by $x \in \mathbb{A}^{3}$.
$\mathbb{P}^{2}, \quad R \longmapsto\left\{\begin{array}{c}\text { submadules of } R\end{array}\right.$ locully free direct sumands?
of rank 2
(subs vs quotiert)

$$
\begin{aligned}
& R^{3}=m_{\oplus} R\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
& m=R^{3} / R\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
\end{aligned}
$$

The Hilbert functor
First attempt: Hilt (P^{n}): Schemes \longrightarrow Sets is given by 1 til $\left(\mathbb{P}^{n}\right)(B)=\left\{\begin{array}{l}\text { subschemes } \\ Z \subseteq \mathbb{P}_{B}^{n}=P^{n} \times B\end{array}\right.$ that are flat der B \}
Here "flat" is siceress property for bundles in algebraic gecretry that guarantees that the fibres of the morphism $z \rightarrow B$ are not too different from each th: (weaker than Fibre undles in \square sssest

Commutatue alg
On R-module m is flat if $-\otimes m$ is an exact functor.
If $O \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is an exact secy of Rumadules, we always have

$$
A \otimes m \rightarrow B \otimes m \rightarrow C \otimes m \rightarrow 0
$$

"tenser is right exact"
The content is requiring $O \rightarrow A \otimes m \rightarrow B \otimes m$ to be exact as veld.
eg If $m=R^{n} \quad m$ is flat

$$
\mathbb{Z} \text { is co a flat } \mathbb{Z} \text {-module: } \mathbb{Z} \xrightarrow[Z 2]{\mathbb{2}} \mathbb{Z} \rightarrow 0
$$

Cuecmetre defog
If $\Phi^{\infty}: A \rightarrow B$ is a ning homomorphism, making B into an A-nodule, then $\theta \operatorname{spec}(B) \rightarrow \operatorname{Spec}(A)$ is flat if B is a flat A-m acute.
In general $\Phi: X \rightarrow Y$ is flat if the stalk $\theta_{x, x}$ of X at a pt x is flat us an

Useful fact: If A is a PID eg $K[+]$ then $\operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ is flat if 9 only f B is a Xorsicnfree A-module. Ref Gseler company $C=3$

Issue: this Hilbert functor is too "big" - the scheme representing it will have +-many component

We make t more manageable by also imposing restrictions on the Hilbert polynomial of fibres.
notation for now, work over a field K $S=K\left[x_{0}, \ldots, x_{n}\right]$
graded: $\operatorname{deg}\left(x_{i}\right)=1 \quad \forall i$, so $S=\oplus S_{d}$ will apply when k is
an ideal $I \subseteq S$ is homegereas is A the residue is generated by hamegerean eleven to field of a fore

Key fact a subschere $Z \subseteq \mathbb{P}_{K}^{n}$ is determed by a homagereans ideal $I \subseteq K\left[x_{0}, x_{n}\right] \leqslant s$

$$
\theta_{z}=\Theta_{p r} / \theta_{z} \quad \theta_{z}=\tilde{I} \text { sheaffication }
$$

On affine chats: $I_{i}=\left[I S\left[x_{i}^{-1}\right]\right)_{0} \subseteq S\left[x_{i}^{-1}\right]_{0}$
Then the intersection of Z with $k\left[\frac{x_{0}}{x_{i}}, \cdots \frac{x_{n}}{x_{i}}\right]$ The affine chat $D\left(x_{i}\right)=\left\{x_{i} \neq 0\right)$ is

$$
\operatorname{Spec}\left(k\left[\frac{x_{e}}{x_{i}}, \frac{x_{m}}{x_{i}} \frac{7}{I_{i}}\right]^{\prime} .\right.
$$

Y The correspenelence between subscheres of \mathbb{P}^{n} a hamegencaus ideal in $K\left[x_{0}, x_{n}\right]$ is it $1-1$; two differetideab can hove the some sheaffication.
Ideals $I, J \subseteq K\left[x_{0}, x_{n}\right]$ correspond to the sane subschere if their suturations agree:
$\left(I:\left\langle x_{0}, x_{n}\right\rangle^{\infty}\right)=\{f \in S: \exists k>0$ with $f m \in I$ for all $\left.m \in\left\langle x_{0}, x_{n}\right\rangle^{k}\right\}$
$\left.\left.\left(I:<x_{0}, x_{n}\right)^{\infty}\right)=\left(J:<x_{0}, x_{n}\right)^{\circ}\right)$.
$\left.\left.\left(I:<x_{c} \quad x_{n}\right)^{\infty}\right)=\left\{f \in S: \exists k>0 \text { with freI } \forall m \in<x_{c} x_{n}\right)^{k}\right\}$
$\operatorname{eg} I=\left\langle x_{1}\right\rangle \quad J=\left\langle x_{1}^{2}, x_{0} x_{1}\right\rangle=\left\langle x_{1}\right\rangle \cap\left\langle x_{0}, x_{1}^{2}\right\rangle$ in $K\left[x_{c}, x_{1}\right]$. I \& J both have saturation $\left\langle x_{1}\right\rangle$. The associated subschere is $[1: 0]$ wi the reduced scheme structure.
In general, I, J have the same saturation if $I_{d}=J_{d}$ for $d \gg 0$.

Defoe The Hilbert function of a honogerears ideal $I \subseteq K\left[x_{0}, x_{\sim}\right]$ is the function
$h_{I}: \mathbb{N} \rightarrow \mathbb{N}$ given by $h_{I}(d)=\operatorname{dim}_{k}\left(\frac{S}{I}\right)_{d}$.

$$
\begin{aligned}
\operatorname{eg} I=\langle 0\rangle h_{I}(d)= & d i m_{k} S_{d} \\
= & \binom{n+d}{d}^{(n+d}=\binom{K^{\epsilon x!}}{n}^{(n)} \\
= & \frac{1}{n!(n+d)(n+d-1) \cdots(n+1)} \\
& \quad \text { polynomial ind of } \\
& \text { degree } n .
\end{aligned}
$$

eg $I=\langle f\rangle$ where f is homogeneavs of deger

$$
\begin{aligned}
h_{I}(d) & =\left\{\begin{array}{ll}
d_{i m} S_{d} & d<m \\
d_{i m} S_{d}-\operatorname{dim}_{k} S_{d-m} & d \geqslant m \\
& =\left\{\begin{array}{cc}
\binom{n+d}{n} & d<m \\
\binom{n+d}{n}-\binom{n-m+d}{n} & d \geqslant m
\end{array}\right.
\end{array} . \begin{array}{l}
\\
0
\end{array}\right)
\end{aligned}
$$

note that $h_{I}(d)$ is a palynomial in d of deyree $n-1$ for $d \gg 0$ $d \geqslant m$

For a homogeneous ideal $I \subseteq S$,
$h_{I}(d)$ agrees with a polynomial $P_{I} \in \mathbb{Q}[t]$ for $d \gg 0$. This polynomial pI_{I} is called the Hilbert polynomial of I cor SI). When Z is a subschere of PD^{n} with icleal I, $\operatorname{dim}(Z)=\operatorname{dey}(P A)$. The degree of z is $\operatorname{dim}(z)$! times the leading clef.

Geometraly,

$$
\begin{aligned}
& P_{I}(d)=X\left(\theta_{z}(d)\right)=\sum_{i=0}^{d_{i m} z}(-1)^{i} \operatorname{dim}_{k} H^{i}\left(P^{\prime} \theta_{z}(d)\right) \\
& \begin{array}{l}
\Theta \lim _{k} H^{c}\left(P^{n}, \theta_{z}(d)\right) \\
\text { fersenishing } \left.\begin{array}{l}
\text { for } d \gg 0
\end{array}\right)
\end{array}
\end{aligned}
$$

eg when z is a hyperswfance of degree m

$$
P_{I}(t)=\binom{n+t}{n}-\binom{n-m+t}{n}
$$

eg when Z is a line in $\mathbb{P}, P_{J}(t)=t_{t}$.
eg when Z is a smooth curve of degree d
\rightarrow genus $y \quad P_{I}(t)=d t+l-g$
If Z is embedded into I^{\wedge} by the complete linear series $L(D)$, this is Riemann
RR: $\quad l(D)-l(K-D)=\operatorname{deg}(D)+1-g$

$$
f(D)-l(k-D)=\operatorname{deg}(D)+\operatorname{l-g}
$$

Apply this to tD, using that

$$
\eta_{c}(t)=\ell(t D)
$$

Since $\ell(K-+D)=0$ for $t \gg 0$

$$
\begin{aligned}
W_{I}(t) & =\operatorname{deg}(t D)+1-g \\
& =t \operatorname{deg}(D)+1-g \\
& =d t+1-g
\end{aligned}
$$

New Hilbert functor
Hilbp $\left(\mathbb{P}^{n}\right)$ Schemes \rightarrow Sets
given by
$\operatorname{Hilb}_{p}\left(\mathbb{P}^{n}\right)(B)=\left\{\begin{array}{l}\text { subschemer } Z \leq \mathbb{P}_{B}^{n} \text { st } \\ Z \rightarrow B \text { is a flat family }\end{array}\right.$ with every fibre hound
Hilbert perynomal P ?
We will has that thy is representable by a projective scheme Hilbp (P il). The onginal Hilbert funder is the represented by the disjat union aver all $P \leftarrow$ countable os
eg when $P(t)=r$ is constant, Hilt p $\left(\mathbb{P}^{m}\right)$ is the Hilbert scheme of pts in IP? This has an irreducible component parameterizing subschemes consestisio of r distinct $p t s$ in $\mathbb{P} s$ (and their degers.) but it can have other components eg when $P(t)=t+1, Z$ is a line in \mathbb{P}^{n} and $\operatorname{Hibp}\left(\mathbb{P}^{n}\right)=\operatorname{Gr}(2, n+1)$
eg when $P(t)=2 t+1$, Hilt p $\left(\mathbb{P}^{2}\right)$ parameterize conics in \mathbb{P}^{2} These can be described by an equation $\forall a x_{0}^{2}+b x_{0} x_{1}+c x_{0} x_{2}+d x_{1}^{2}+e x_{1} x_{2}+f x_{2}^{2}=0$
 so $H_{l i l}{ }_{2 t+1}\left(P^{2}\right)=p^{p}$
The eats $\&$ defines the universal family of $H_{i l} b_{2 t+1}\left(P^{2}\right)$ in $\mathbb{P}^{2} \times P^{5}$

In general, when $P(t)=\binom{n+t}{0}-\binom{n-m+t}{n}$ the Hibert schere Hibp(\mathbb{P}^{n}) parameterizs hyperswiaces is \mathbb{P}^{\prime} of deyree m, so till $_{p}\left(\mathbb{P}^{+}\right) \simeq 1 p\left({ }^{+\ddagger}\right)-1$
Y Irplicit exeraise If z has Hiber poly P, Z is a hypersurtace of degree eg If $P(t)=\binom{t+r}{r}$ then if Z has Hibert pelyromial P, Z is a subspuce of \mathbb{P}^{n} of din r (ex.) so $H_{1 i l} b_{p}\left(1 P^{n}\right)=C_{r}((r+1, n+1)$

I If P is the Hilbert pelynomal of all subbchemes with a given property (eyldimn-1, dey $\begin{gathered}\text { or degenf } r \text { distinct pts) it does not always }\end{gathered}$ follow that every subschere with Hilbert pdynamial p has the property eg The "twisted cubic" (image of the Veronese embedding of \mathbb{P}^{\mid}into \mathbb{P}^{3}) has Hilbert 3t+1.
However $H_{l i l}{ }_{3+t}\left(I P^{3}\right)$ has 2 comp
one gerevicallyzeterizes twisted cubics
I the other generically parunetering a plane cubic plus a pl.

Ref. Piere-Schlessinger
This happers ratiely with reduli sparces
Mext. Corstruct Hilbp(P^{n}) as a subscheme of a Grussmannioen.

