TCC Hilbert schemes and moduli spaces
vevox.app 181-417-956
Today Patholegies of Hilbet scheres

The smothable component of Hill (A^{d})
We first show that the closure of the locus of N distinct reduced pts in \mathbb{A}^{d} P is an irreducible compent of $H_{i} N\left(A^{d}\right)$. for any d. locus irceduabte, so live one comenet
dim It suffices to find a point in this
Nd. locus whose target space has dimension at most Nd. That pt will then be smooth at the dimensan of the component is Nd.

Consider $I=\left\langle f_{1}, x_{2},, x d\right\rangle \subseteq K\left(x_{1}, x_{d}\right]=S$ whee f is a polynomial in x_{1} of degree N. Then $\operatorname{dim}_{k}\left(\frac{S}{I}\right)=N$, so [I] $\in \operatorname{Hill}^{N}\left(A^{d}\right)$.
Recall The tangent space to [I] is $\operatorname{Hom}_{5}(I, S / I)$.
For $\varphi: I \longrightarrow S I T, \varphi$ is determined by $\varphi(f), \varphi\left(x_{2}\right), \cdots, \varphi\left(x_{d}\right)$. Since $\operatorname{din}_{k} \frac{S}{I}=N_{S}$, The space of choices for these has climenan LN, so dink $H \operatorname{mon}_{s}\left(I, \frac{S}{I}\right) \leqslant d N$.

Snce dN is oer lawer band for the dimersion of any cemponet cartaining
(I), so $\lim _{k} \operatorname{Hom}_{\text {(}}(I, S, I)=d W$, and thes is a smooth pand.
The componet that is the closure of the lous of N reduced parto is called te smocthable component
It has an explicit description as a blow-up of $\left(1 / A^{d}\right)^{N}$
$\sec \left(k\left[\left(A^{d}\right)^{N}\right]^{S^{N}}\right) / S^{N} \leftarrow$ chow varety

The Hilbert scheme of pts in \mathbb{A}^{3}
(1) Hill $\left(1 A^{3}\right)$ is singular for $N \geqslant 4$.

$$
\begin{aligned}
& \operatorname{eg} N=4 \\
& 1, x, y, z^{k} \\
& \varphi \in \operatorname{Hom}(m, s / m) \\
& \varphi\left(x^{2}\right)=\phi x+b x+c y+d z \text { for sere } a, b, c, d \\
& \varphi(x y)=e+f x+g y+h z
\end{aligned}
$$

$$
\begin{aligned}
& m=\left\langle x^{2}, x y, x z, y^{2}, y z, z^{2}\right\rangle \\
& \operatorname{dim}_{k} \operatorname{Hom}_{s}(m, s / m) \\
&=18=6 \times 3 \\
&> 12 \\
&=4 \times 3 \\
& \mathbb{N}^{4} d
\end{aligned}
$$

(since $m{ }_{\text {ines }}^{N \text { an }}$ the smacthable compenct So (m) is ot a smecth pt of 1 tilb ${ }^{4}\left(\mathbb{A}^{3}\right)$
(2) We next show Hibl$n\left(\mathbb{A}^{3}\right)$ is reducible for $N \gg C$.
We de the by shaver a lair 7 dim swath. Grassinamir embeds into Hill (A N3)
Construction: Set $S=K[x, y, z]$
Fix a degree r e $O<S<\operatorname{dim}_{k} S_{r}=\binom{r+2}{2}$

$$
\text { Set } \begin{aligned}
N=\sum_{i=0}^{M} \operatorname{dim}_{k} S_{i}+S & =\binom{r-1+3}{3}+S \\
& =\binom{r+2}{3}+S .
\end{aligned}
$$

For every subspace $L S S_{r}$ of dim $\binom{$ ra z }{2}$-S$. The ideal $I_{L}=\langle L\rangle+S_{\geqslant r+1}$ has dimk $\frac{S_{L}}{I_{L}}=N$
$I_{L}=\langle L\rangle+S_{\geqslant r+1}$ for $L \in \operatorname{Cor}\left(\binom{r+2}{2}-S, S_{r}\right)$.
This gives a flat over $\operatorname{Cr}\left(\binom{+2}{2}-s,(r+2)\right)$,
so an embedding of $\operatorname{Gr}\left(\binom{r+3}{2}-5,\binom{r+2}{2}\right)$ into \backslash till ${ }^{N}\left(\mathbb{A}^{3}\right)$
To shad 1 ill $^{N}\left(A^{3}\right)$ is reducible, it suffices to choose r, s so that the
dinension of the Curussmomis is greater then He dincisia of the smocthable company-
ie $\left.s\binom{r+2}{2}-s\right)>3\binom{r+2}{3}+3 s t 3 N$
$=s\left(\binom{r+2}{2}-s\right)>3\binom{r+2}{3}+3 s$
choose $r \equiv 3$ mod 4 so $\binom{r+2}{2}=\frac{1}{2}(r+2)(r+1)$
set $s=\frac{1}{2}\binom{r+2}{2}$.
is even.
Then dim Curussmaman
din snacthable comp.

$$
=3 N=3\binom{x-2}{3}+\frac{3}{3}\binom{r+2}{2} t p_{j} \text { in } \operatorname{dey} 3
$$

For $r \gg 0$ the dimension of the Curassows is large so 1 til ${ }^{N}\left(A^{3}\right)$ is reducible.

Iarrdi-o Version of this argumet shows Hill $\mathrm{H}^{N}\left(\mathbb{A}^{3}\right)$ is reducable for $N \geqslant 78$ We know Hill $^{N}\left(A^{3}\right)$ is ireducible
for $N \leq 11^{* 2017}$

$$
12 \leqslant N \leqslant 77 ? ? ?
$$

Far $d \geqslant 4 \quad \backslash$-ilbn (A^{d}) is reducble fo $N \geqslant 8$ a irreducuble for $N<8$ pocren CEVV 2088
$C \in V V 2008$
Far smactinass fos arbirsuy Hibp (Pn)
see recent work of Skjelies-Smith 2020 chorackuinges P ith Hibp(IPN) smacth.

Murphy's Law for Hilbert schemes
"There is no geometric possibilly so horrible that cannot be found generically,
on sore comport of some Hilbert schere" on sore comport of sone Hilbert schere"
(Horns. Morison]
Philosophy a throated to mumford who shaved 1 til ${ }_{14 t-23}^{2 t+1-g}\left(1 P^{3}\right)$ has an componet that is everywhere non reduced, even though the curves on this component wee (gerencully) smooth a irreducible, of degree 14 e genus 24 . They lie an animate cube surface

Made formal by Vakil who shoued even singularty type appeurs on some trillores schere
O marphism $\varphi: X \rightarrow Y$ of schens of finite type wer K is smath if A is Elat a evey fibre is geometrically regular (think: still ronsigular when puss to calg clasure) $Q:(X, p) \rightarrow(Y, q)$ is a smecth mophrism of pointed schemes if $p \in X, q \in Y, \varphi$ is a smath marphism with $\varphi(p)=q$

Defn a singularty type is an equivalence class of panked schemes dekined by secting $(x, p) \sim(y, q)$ if Q: $(x, p) \rightarrow(y, q)$ is a smath mophism. eg The prgection $X \times \mathbb{A}^{n} \rightarrow X$ is smoth so $\left(x \times \mathbb{A}^{n},(p, 0)\right) \backsim(x, p)$ for any $p^{t} p \in X$.

Defoe We say Murphy's Lan holds for a moduli space m if every singularity type of pointed schemes appears on M. This means that there is a pt $\quad f \in M$ with completed local ing $\hat{\theta}_{m, q}$ isomorphic to $\hat{e}_{x, p}$ for sone representative (X, p) of the singularity tyre.

Theorem Vakil
The Hilbet schere Hilb (IIn) satisfies Murphy's law (for large n). In particular, this hdds for Hibsurences $^{\left(P^{t}\right)^{-} \underset{\operatorname{deg} P=2}{11} H_{i}\left(b_{p}\left(P^{t}\right)\right) ~}$
 consider $(x, p)=(\operatorname{Spec}(k(x),\langle x))$ Suppese $\frac{k(x)}{\left(x^{2}\right)}$ is the lecul noy of a pt
[X] on Hill (P^{n}) Then [X] is as zero-dimensiaal comport PCiL($n+1$) acts an Hilbp(IPn) so $[X]$ must be fired by this action But the mons $X=\mathbb{P}$ or $X=\varnothing$ (the saturated ideal of X is Borel-fxed so if $I \neq 0$, I contras u pacer of x_{0}. a symmetric so contains a porer of x_{i} foralli out then $I \geq\left\langle x_{0}, x\right\rangle^{m}$, so $\quad X=\phi$, , $\operatorname{ey} P=\binom{t+n}{n}$. So $\left(t_{i} b_{p}\left(\mid P^{n}\right)\right.$ is are reduced

So (x, p) does no appear in any Hill p $\left(\mathrm{P}^{n}\right)$.
However we con still lock for scatty in the equivalence class

$$
\begin{array}{r}
\text { Leg } \operatorname{spec}\left(\frac{k\left[x_{1} x_{n}\right]}{\left.\left(x_{1}^{2}\right]\right)},(0, \ldots)\right) \\
\text { for } n>1 .
\end{array}
$$

Consequences of muphys Law
eg non-reduced pts exist.

$$
\begin{equation*}
(x, p)=(\operatorname{spec} k[x), 0) \cdot a_{n y}(y, q)^{n} \tag{x,p}
\end{equation*}
$$

is rod reduced at of
eg There are components that only exist in choracterstic P. ie $\operatorname{Hilb}_{p}\left(\mathbb{P}_{R}^{n}\right) \leftarrow$ sone comports
\qquad $\operatorname{Spec}(\mathbb{R})$

$$
\begin{aligned}
& (x, p)=\left(\operatorname { s p e c } \left(\frac{2, z)}{}(0) .\right.\right. \\
& \text { If }(y, q)+(x, q) \text { then } p \Theta_{y, q}=0
\end{aligned}
$$

so this only occurs in choracterstice p
Theorem [Jehsiejew]
muphys lan \$olds for- Hibpts (A A^{16})

Key idea in these proof
Reduce to uncthr moduli spue where muphys law hods: the moduli space of pant-line incidences in \mathbb{P}^{2} (secretly realization spaces of matrads)

Defn An incidence schene of pts e lines in IP2 is a locally clesed subscheme of $\left(i P^{2}\right)^{m} \times\left(P^{2 V}\right)^{n}=\left\{\left(p, p_{m}\right) \times(l, l, l n)\right\}$ paraneterngig $m \geq 4$ distind pts q n distiat lies with prescabed incidences 4 ronincidences (p i lies an le $l y$ or p des nt lie an line $l j)$. Normalise: $p=[1: 0 \cdot 0] \quad \beta_{3}=\left[0^{\prime} \cdot 1,0\right], p_{3}=[0 . C: 1]$, [1:1:1]. We reque any twe liees to intusect in a marked pt e auy twolies kantain $\geqslant 3$ marked

The diagrun encodes
the reguired incidences/ronixiduces
l_{1} catans $p_{1}, p_{3}, p_{6} \quad l_{2}: p_{3}, p_{4}, p_{5}$

$$
\begin{array}{ll}
(1,0,0) \cdot\left(d_{1}, d_{2}, d_{3}\right)=0 & l_{3} \cdot p_{2}, p_{3}, p_{2} \\
d_{1}=0=d_{3} & d_{2}=1
\end{array}
$$

$$
\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right],\left[\begin{array}{ccccccc}
0 & 1 & 1 & 1 & 0 & 0 & j 1 \\
1 & -1 & 0 & 0 & 1 & 0 & j_{2} \\
0 & 0 & 0 & -1 & -1 & 1 & j 3
\end{array}\right]
$$

$P_{x,} P_{5}, P_{0}$ hee an l_{7}

$$
j_{1}+j_{2}=j_{1}+j_{3}=j_{2}+j_{3}=0
$$

nonzeestan iff chrolkl $=2$
c. So the inculence sckene is a reduced pt in chor 2 empty olw

Therrem (mnév-Sturnfels urivesality)
The disjant micn of all incidence schenes satisfies muphys laur. see altso Lafforgue
Idea of the pf Reduce to singukerty is $\operatorname{spec}\left(\frac{k\left[x_{1}, x_{n}\right]}{\left\langle f_{y}, f_{r}\right\rangle_{2}}\right)$ rewite in terms of atomic relatios

