TCC Hilbert Schemes and moduli spaces
vevoxapp 160-719-293
Today: Smoothness

1) Tangent space to Hilbp $\left(\mathbb{P}^{n}\right)$
2) Smathress of H ill $N\left(\mathbb{A}^{2}\right)$

Tanget space to Hiblp(IPn
Recall that the Zariski tanget spunce to a schere X at a K-raticnal $p t p$ is $\operatorname{Hom}\left(\frac{m}{m^{2}}, K\right)$
where m is the naximal ideal of $\theta_{x, p}$ a $K=\underset{\substack{x(p) \\ \text { residue } \\ \text { field. }}}{ } \underbrace{}_{x, p / m}$ Cinight be chor / pereet ousuinghans)

Lemma a $k[\varepsilon\} \frac{\mathbb{k}}{\varepsilon^{2}}$-Valued $(\operatorname{spec}(k[\varepsilon]), x)$ is a K-rational pt p of X together with an elemat of the Zoriski ranges space to X at p Eisenbud Proof
dud The K-algebra homonomorphis m ${ }^{3} K(E) \frac{\varepsilon^{2}}{} \rightarrow K$ induces a morphism

$$
\operatorname{spec}(k) \rightarrow 0 \rightarrow \operatorname{Soc}\left(\frac{k C \varepsilon]}{\varepsilon^{2}}\right) \text {, so a } \frac{k \varepsilon]}{\varepsilon^{2}} \text {-valued }
$$ pt of X induces a K-rational pt of X.

We also get a local homomephism
$\Theta_{x, p} \rightarrow \frac{K\left[\frac{1}{\varepsilon^{2}}\right.}{}$ which induces

$$
\begin{aligned}
& m \longmapsto\langle\varepsilon\rangle \\
& m m^{2} \longrightarrow\langle\varepsilon\rangle^{\prime}=k
\end{aligned}
$$

$\mathbb{S i n}_{\text {in Zarski tangent space. }}$
Conversely given $p \in X, i+m_{p_{p}} \rightarrow k_{11}$ note that $\Theta_{\frac{p_{p}}{m_{p}^{2}}} \simeq \Theta_{x_{p}^{\prime}}^{\prime \prime \prime} \oplus \frac{m}{m}_{m_{p}^{2}}^{m_{p}}$

We then get a ring homomephism
Q: $Q_{x, p} \rightarrow \frac{k\left[\frac{c}{\varepsilon^{2}}\right.}{}$ and so a maphism Spec $\left(\mathbb{E \varepsilon} \frac{\varepsilon}{\varepsilon^{2}}\right) \rightarrow X$ Consequerce The tanget space to Hilbp (\mathbb{P}^{n}) at at pt $[X]$ is an elemet of $\mathrm{Ham}\left(S_{x}\left[\frac{(c)}{\varepsilon^{2}}\right)\right.$, $\mathrm{Hilbg}_{\mathrm{g}}\left(\mathbb{P}^{n}\right)$) Thot maps speck) to [X]

This set is in natural correspondence with the set of flat families

$$
\begin{aligned}
& H \subseteq \mathbb{P}_{k K\left(\frac{1}{a^{2}}\right.}^{n} \text { where the } \\
& \downarrow \text { fibre over } \\
& \operatorname{Spec}\left(\frac{k \& \Delta}{\varepsilon^{2}}\right)<\varepsilon \text { is } X
\end{aligned}
$$

The space of such flat fumiles is called the space of first order deformates

$$
x \text { in } \mathbb{P}_{k}^{n}
$$

Definition The normal sheaf to a closed subschere X of a sphere Y is the sheaf

$$
N_{x y y}=\operatorname{tam}_{\theta_{x}}\left(\theta_{g_{2}}, \theta_{x}\right)=\operatorname{Hem} \theta_{y}\left(g \theta_{x}\right)
$$

whee P is the ideal sheaf of X in Y. eg if X is the subschere of \mathbb{A}^{n} determined by an ideal $I \subseteq S=K\left(x, x_{n}\right)$ the normal sheath is the sheafificition of $\operatorname{Han}\left(I, \frac{S}{I}\right)$
$\operatorname{Hom}_{s}(I, S / I)$
Eisenbud Hams Then ET-29
Theorem The space of First order deformations of a closed subschere x of a schere Y is the space of global sections of the normal sheaf $N_{x / y .}$.
Idea when $Y=\mathbb{A}^{2}$
Idea when $y=\mathbb{A}^{2} \quad \operatorname{Span}\left(\frac{k \ll 2}{b^{2}}\right)$

where $J=\left\langle f_{1}+4 g, \cdots, f_{s}+\varepsilon g_{s}\right\rangle$
whee F_{1}, f_{s} ge-reake the ideal I of X, , gi, $K(x, y)$

$$
J=\left\langle f_{1}+\varepsilon g_{1}, \ldots, f_{s}+\varepsilon g_{s}\right\rangle, I=\left\langle f_{1}, f_{s}\right\rangle
$$

Key idea: $\varphi: I \longrightarrow \frac{k[x, y]}{I} \in \operatorname{Hem}\left(I, \frac{S}{I}\right)$
given by $\varphi\left(f_{i}\right)=g_{i}$ exists if e
only if x

Smoothness of Hill $\left(\mathbb{A}^{2}\right)$
The Hilbert scheme of N pts in \mathbb{A}^{2} is the locus in $\operatorname{Hilb}_{p}\left(\mathbb{P}^{2}\right)$ for $P(t)=\mathbb{N}$ of subscherres suspected in $A^{2} \leq \mathbb{P}^{2}$. We now show this is smooth. Key special case of fegarty's result that Hilbert schemes of pts on smooth sutures are smack, a irroducule. we follow the apprench of Maiman. see also miller-Stuinfels

Stepl The singular lccus (if ronempty) contouns a monomal ideal
truefor all Hilbolipn)
This follows from the Grobner degereratien Flat famby $\operatorname{Spec}\left(\frac{k(x, y, t)}{I_{t}}\right)$ where $I_{t}=\left\langle\tilde{F}: f_{\in I}\right\rangle$

This determies a morphism $Q: A^{\prime} \rightarrow$ hiit
win $\varphi(1)=[I]$. If $(I)^{\prime}$ is a singuler pt of $\operatorname{HilbN}\left(\mathbb{R}^{2}\right)$, so is $[+I]$ for t+xa fibe we $+\mathbb{A}^{\prime} \varphi(t)$

The singular locus of any schere is closed, so the special tiber Y(O) must also be a singular pt.
This is $\left[i_{n}(I)\right]$.
initial ideal
ur t w
For yeaned $w \in \mathbb{N} \mathbb{N}^{2}$ this is a monomial ideal, so if $H_{i b} N\left(A^{2}\right)$ hos a singular pt, there is a monomial ideal that is singular. Back at 11.03

Step 2 The dimension of $H_{i l l} N\left(A^{2}\right)$ at a monomial ideal is at least $2 N$
a monomial ideal $M \leq S=K[x, y]$ is a p^{t} in $H_{i l b^{N}}\left(A^{2}\right)$ if $\operatorname{dim} \frac{S}{I}=N$
We car represent m by its staircase

$$
\operatorname{eg} m=\left\langle x^{4}, x^{3} y, x y^{2}, y^{4}\right\rangle
$$

$$
N=9
$$

The number of boxes under the stir case is N (since monomials not in m form a basis for $s m$)
This is the ferrets shape/Young diagram of a partikia of \mathbb{N}

$$
\operatorname{eg} 9=4+3+1+1
$$

\rightarrow The number of normal ideal in $H_{\text {fib }} N\left(A^{2}\right)$ is the nutter of partitions of \mathbb{N}.

Fix a monomial ideal m with $d i m_{k}\left(\frac{s}{m}\right)=N$ well assume chock) =
Consider $\left(\quad(i, j) \in \mathbb{N}^{2} ; x^{i} y^{j} \& m\right\}$ as a collection of N pts in \mathbb{A}^{2}.
Let I be the ideal of polynomial vanishing on there pts (so dim $\frac{s}{I}=N$)
For each generator $x^{i} y_{j-1}^{j}$ of $m x^{2} y^{2}$ construct $f=\prod_{k=0}^{j-1}(x-k) \sum_{l=0}^{j-1}(y-l)$
Note that $f \in I$.
$x(x-1) y(y-1)$ distrazaico of of

$$
f=\prod_{k=0}^{i-}(x-k) \prod_{l=0}^{i=}(y-l)
$$

For any $\omega \in \mathbb{N}_{20}^{2}$ in w $(f)=x^{i} y^{j}$
So $m \leq i_{\omega}(I)$. Since $\operatorname{dim}_{k}\left(\frac{S_{m}}{m}\right)$,

$$
=\operatorname{dim}_{K}\left(\frac{S}{S}\right)=\mathbb{N}
$$

we must have $M=\operatorname{in}(I)$
Thus m is the limit of a fanny of N distinct pts

1 So [m] lies on the same distinct pts.

The lacus of N distinct redueed pts

$$
\text { is }\left(\left(A^{2}\right)^{N} \backslash\left\{\begin{array}{l}
\text { diaggac }) \\
\left(x_{i} ; y_{i}\right)=\left(x_{i}, y_{j}\right)
\end{array}\right\}\right.
$$

Which has dimensian 2N,
so the irreducible compenect has dimensicn $\geqslant 2 N$.
(argumet geverilizs to $\mathrm{Hilb}^{N}\left(A^{d}\right)$ Fo any d) \Rightarrow radius of $H_{i l l}^{N}{ }^{N}\left(A^{d}\right)$

Step b The target space at a menomel ideal is $2 N$-dimensional
we cont to compute dink $H_{c m}\left(m, \frac{S}{m}\right)$ an element $\varphi \in \operatorname{Hom}(m, S / m)$ is determed by choosing where φ send the generators of m, subject to the requrent that these chaces are compatible

$$
\begin{aligned}
& \text { compatible } \\
& \text { eg } m=\left\langle x^{4}, x^{3} y, x y^{2}, y^{4}\right\rangle \text { reed } \\
& \varphi\left(x^{4} y\right)=y l\left(x^{4}\right) \\
&=x \varphi\left(x^{3} y\right)
\end{aligned}
$$

Defn The first syzygy module of a graded module P is the module of relations anting the minimal ygneraters of P. If $p i, 1 p m$ generate P as a ${ }^{\text {module, }}$

$$
\begin{aligned}
& S_{y z}(P)=\left\{\left(r_{1}, r_{m}\right) \in S^{m} \sum r_{i} p_{i}=0\right\} \\
& 0 \in P \leftarrow S^{m} \leftarrow S_{y_{z}}(P) \leftarrow 0
\end{aligned}
$$

eg For $m=\left\langle x^{4}, x^{3} y, x y^{2}, y^{4}\right\rangle$

$$
(-y, x, 0,0) \text { is a syzygy }
$$

Consider $m=\left\langle x^{i k} y^{j k}, 0 \leqslant k \leqslant S\right\rangle$. For $\left(f_{0}, \ldots, f_{s}\right)$ to defie an elent $u \in H_{0 m}\left(m, \frac{s}{m}\right)$ by $\varphi\left(x^{i_{k}} y^{j k}\right)=f_{k}$ we nal $\sum r_{i f i}=0 \in \frac{S}{\mathrm{~m}}$ for all

$$
\left(r_{0}, r_{s}\right) \in S_{y}(2(m)
$$

Lemma The sysygy module of a mananid ided $m \leq K[x, y]$ is generatal by "adjace-d sysygres":

$$
\begin{aligned}
& \text { eg } m=\left\langle x^{i}, x^{3} y, x^{2} y^{2}, y^{4}\right\rangle \\
& \text { Syz(m)=S\{(-y,x,0,0),(0,-y,x,0),} \begin{array}{l}
\left.\left(0,0,-y^{2}, x\right)\right\}
\end{array}
\end{aligned}
$$

Wite m_{1}, \ldots, m_{N} for the monomials ind in M.
We can wit $f_{k}=x^{i k} y^{j k}+\sum_{i=1}^{n} a_{k l} m_{l}$.
eg $m=\left\langle x^{3}, x y, y^{2}\right\rangle$

$$
\begin{aligned}
& f_{0}=x^{3}+d_{01}+a_{02}^{y} x+a_{03} x^{2}+a_{04}^{y} y \\
& f_{1}=x^{x^{2} y}+a_{11}+a_{12} x^{x^{2}}+a_{13} x^{2} x^{2}+a_{14} x^{2} y \\
& f_{2}=y^{2}+a_{11}+a_{22} x+a_{23} x^{2}+a_{24} y
\end{aligned}
$$

we reed $y f_{0}=x^{2} f_{1}, y f_{1}=x f_{2}$ in S_{m}

$$
a_{01}=a_{11}=0=a_{21}=a_{22}=0
$$

So dink $H_{\text {tom }}(m, s / m)=8=2 N$

We represet akee as an ural from $x^{i x} y^{j k}$ to ml a ante $\left(k, m_{l}\right)$

Our conditions on syzygies say that if an arrow can be maned down + to the right (ar up e left) keeping the toul on the bandany it the head be neath the staurase, the coefes all agree. If the head crosses an axis, $a_{k}=0$.

Denzer arrous pont (weakly) nathmest or boutherast negatine positive
We now show there ue $2 N$ equivalena classes of nonarrews, subject to our rules frem the previcus slide. To each box in the Young diagem we assaciate α ar rous

positive:
from top of column
to almost end of now
(then move left to hit a min generator)

negative
from end dou to al most end of calm)
(then dam to hit a minimal gevento

Claim: Every equivalence class of arrows shows up here
(move a positive arron daun/right as far as possible, and then further rift until the head is the last box in its roar)
$\Rightarrow \&$ equine classes is $2 N$

$$
\Rightarrow \operatorname{dim}_{k}\left(\operatorname{m}_{k} \frac{s}{f}\right)=2 N
$$

\Rightarrow Hill ${ }^{N}\left(1 A^{2}\right)$ is smooth at $[m]$

Miller-sturnfels comb cammut. alg

