TCe Hilbert schemes and Modeli spuces
Vevox.app 198-238-052
Last time: Construction of Hilbp(IPn) as a subschene of a Cirassmannian.
Teday connectiedness of till $\left(P^{n}\right)$ and Hilbert schemes Hilb(X) of other vareties/scheres.

Connectedness
Theorem (Hartshorie)
The Hilbert scheme $H_{i l} b_{p}\left(\mathbb{P}^{n}\right)$ is conceded. Well actually show it is rationally choir conrexted
 cures

Weird fact: The prof does nt use the fact that Hilt $p\left(\mathbb{P}^{n}\right)$ exists (or details of construction)
Key construction Ciöbner degeneration.
Given a homegeneaus ideal $I \subseteq K\left[x_{0}, \ldots, \times n\right]$ and a weight vector $\omega \in \mathbb{N}^{n}$ we construct the ideal

$$
I_{t}=\langle\tilde{f}: f \in I\rangle \subseteq K\left[x_{0}, \ldots, x_{v} t\right]
$$

where for $f=\sum \operatorname{cux} x^{\prime}$ we have

$$
\tilde{F}=t^{\max (\omega \cdot u)} \sum c_{u} \tau^{-\omega \cdot u} x^{u}=t^{\max (\omega \cdot u)} f\left(\frac{x_{i}}{\nmid \omega i}\right)
$$

$$
F=f^{\max (\omega \cdot \omega)} f\left(\frac{x_{i}}{f^{w}}\right) \quad I_{T}=\langle f: f \in I\rangle \subseteq K\left[x_{0}, x_{n}, t\right]
$$

eg Let $I=\left\langle x_{1} x_{2}-x_{1}^{2}\right\rangle \leq k\left[x_{0}, x_{1}, x_{2}\right]$.
For $\omega=(10,5,1) f=x_{0} x_{2}-x_{1}^{2}$ we have

$$
\begin{aligned}
& \underset{f}{f}=t^{\prime \prime}\left(T^{-11} x_{0} x_{2}-F^{-1} x_{1}^{2}\right)=x_{0} x_{2}-t x_{1}^{2} \\
& \tilde{T}=
\end{aligned}
$$

$\tilde{I}=\left\langle x_{0} x_{2}-+x_{1}^{2}\right\rangle \quad \eta \tilde{I}$ is no al ways generated by $\left(\tilde{F}_{i}: f_{i}\right.$ gondi
but the for but true for pul ideal
pincipul
For $\omega=(1,5,1)$, pincipul ideal

$$
f=t^{+0}\left(f^{2} x_{0} x_{2}-t^{10} x_{1}^{2}\right)=t^{8} x_{0} x_{2}-x_{1}^{2}
$$

The ideal $\tilde{\mathcal{I}}=\langle\tilde{F}: f \in I\rangle \leq k\left[x_{0}^{\prime}, \ldots, x_{n}^{\prime}, f\right]$ defies a subscheme of $\mathbb{P D}^{\prime} \times \mid A^{\prime}$, and the inclusion $K[t] \rightarrow K\left[x_{2}, x_{n}+7\right]$ induces a

$$
\operatorname{Prog}\left(\frac{K\left[x_{c}, J x_{n}, t\right]}{\frac{1}{3}}\right)
$$

Key fact: π is flat, and all fibres aver thc are iscmaphic to $\operatorname{Pr} g\left(K<x_{0}, \frac{\left.x_{n}\right)}{I}\right)_{\theta}$. The fibre over O is defined by the initial ideal in the sense of birdie bases
$\operatorname{eg} I=\left\langle x_{0} x_{2}-x_{1}^{2}\right\rangle \leftarrow \begin{gathered}\text { Veronese embedding of } \\ \underset{p^{1}}{ } \text { into } p^{2}\end{gathered}$

$$
\omega=(10,5,1) \quad \tilde{I}=\left\langle x_{0} x_{2}-r x_{1}^{2}\right\rangle
$$

Fibre over $0:\left\langle x_{0} x_{2}\right\rangle \leftarrow 2$ cocrduate lines

$$
\omega=(1,5,1) \quad \tilde{I}=\left\langle\dot{J}^{8} x<x_{2}-\dot{x}_{1}^{2}\right\rangle
$$

Fibre over 0 : $\left\langle x_{1}^{2}\right\rangle \longleftarrow$ double line.
Flat: $K\left[x_{0}, x_{1}, x_{2},+\right] \frac{\left\langle x_{0}\right.}{\left\langle x_{0} x_{2}+x_{1}^{2}\right\rangle}$ with bris $K(t]$ module
$\left.\begin{array}{l}\left\{\begin{array}{l}\text { monomial in } x_{0}, x_{1}, x_{2} \\ \text { divisible by } x_{0}\end{array} x_{2}\right.\end{array}\right\}$

Gröbner references:
Basics: Cox, Litte, O'Shea Ideald, Vareties, and algonthms

Stwmfels Cirorer bases o convex polytopes

Connectedness Precf
Step 1: Reduce to the cure that I is Barrelfixed.
The group $C L(n+l, K)$ acts on
$K\left(x_{c}, \ldots, x_{n}\right)_{n}$ by linear charge of coordinates:

$$
\begin{aligned}
& x_{i} \mapsto \sum_{j=0}^{n} a_{j i} x_{j} \\
&\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \cdot\left(x_{0}^{2}+2 x_{0} x_{i}+x_{i}^{2}\right)=\left(x_{0}+3 x_{1}\right)^{2}+2\left(x_{0}+3 x_{1}\right)\left(2 x_{0}+4 x_{i}\right) \\
&+\left(2 x_{c}+4 x_{i}\right)^{2} \\
&= 9 x_{c}^{2}+42 x_{c} x_{1}+49 x_{1}^{2}
\end{aligned}
$$

$$
x_{i} \mapsto \sum_{j=0}^{n} a_{j i} x_{j}
$$

We consider the action of the Barrel group of uppertrangular matres.
Lemma When char $K=0$, an ideal $I \leq K\left[x_{1}, x_{n}\right]$ is fixed by the action of the Basel grip is a a dy if

1) I is a monomial ideal
2) For all mancmiabes $x^{x_{i}} x^{x_{u}^{u}} \in I$ e $x_{i} \mid x^{u}$,

Straggly we have $\frac{x_{j}}{x_{i}} x^{u} \in I$ for all $j<i$.

Borel-fixed ideals are strongly stable monomial ideals.
Sketch for monomial
That I is monomial follows from the fact that t is fixed by T =diagonal mats es Supper traneurlar
T acts by scaling varables:

$$
\left(t_{1}, t_{n}\right) \cdot x_{i}=t_{i} x_{i}
$$

To see T-fixed \Rightarrow monomial:
If $x_{0}+x_{1} \in I_{t} \leq K\left[x_{0}, x_{1}\right]$, then $(1, t) \cdot\left(x_{0}+x_{1}\right)$
OD $I_{\text {, so }}\left(x_{0}+x_{1}\right)-\left(x_{0}+t x_{1}\right)=(1-t) x_{1}+x_{c}+t x_{1} \in I$ for

$$
\begin{array}{r}
\text { T, so } \begin{array}{r}
\left(x_{0}+x_{1}\right)-\left(x_{0}+4 x_{1}\right)=(1-+) x_{1} \in I \not x_{0}+T x_{1} \in I \text { for } \\
\\
x_{0} \in I
\end{array} x_{1} \in I
\end{array}
$$

$\operatorname{eg} I=\left\langle x_{0}^{2}, x_{0} x_{1}, x_{1}^{2}\right\rangle \subseteq K\left[x_{0}, x_{1}, x_{2}\right]$ is Berel-fixed wirle $J=\left\langle x_{0}^{2}, x_{1}^{2}, x_{2}^{2}\right\rangle$ is rot-
$x_{1}^{2} \in J$ but $\frac{x_{c}}{x_{1}} x_{1}^{2}=x_{0} x_{1} \notin J$.
Useful Facto

1) The saturation of a Barel-Eved ideal is Barel-Fuxed
2) There are aly fintely mony saturated Barel-tued cleals with a given Hilbet polyromial.

Preposition Fix a homcagreows ideal
$I \subseteq k\left[x_{0}, \ldots \times N\right.$, and generic w. There is an open set $U \subseteq G L(n+1, K)$ for which
$i_{n}(g I)$ is constant for gill. This is (Berel-fued for $\omega_{a}>w_{1} \gg w_{n}$.
genre initial ideal gina (I).

$$
\begin{aligned}
& \operatorname{eg} I=\left\langle x_{1}+x_{2}\right\rangle \subseteq k\left[x_{0}, x_{1}, x_{2}\right] \text {. For } g=\left(g_{i}\right) \\
& g I=\left\langle g_{01} x_{2}+g_{11} x_{1}+g_{21} x_{2}+g_{02} x_{0}+g_{12} x_{1}+g_{22} x_{2}\right\rangle \\
& \\
& \left.=\left\langle\left(g_{11} * g_{02}\right) x_{0}+\left(g_{11}+g_{12}\right) x_{1}+g_{21}+g_{22}\right) x_{2}\right\rangle \\
& \text { For } \omega=(10,5,1) \& U=\left\{g_{01}+g_{02} \neq 0\right\} \subseteq a(3, k) \\
& \\
& \text { in w }(g I)=\left\langle x_{0}\right\rangle \text { © Bel fixed }
\end{aligned}
$$

Thus stating at $[I] \in$ tilbp $\left(P^{n}\right)$, we chase a path in $\mathcal{U}(n+1, K)$ to a ptlin U, which gives a path [I] s [gId, then take the initial ideal [gI]] [gino (I]) \leftarrow Bereltilued.

Step 2. move towards the lexicographic ideal Given a Borel-fixed ideal we construct an ideal J with exactly two initial ideal: $i_{\omega}(J)=I, \quad \operatorname{in}_{-\omega}(J)=I^{\prime}$,

$$
\operatorname{reall}^{\top}{ }^{\top} N(1,1)-\omega
$$

where I^{\prime} is closer to the lexicographic ideal. We then take gikex (I') to get andter BCal-fixed ideal closer to I Ilex Than I. Inly finitely mary, se must terminate This is the appracac of Peeve e stillman

Idea of construction
Let I be a saturated Borel-fxed ideal not equal to the lexicographic ideal Let d be the smallest degree in which Id is nit a lex-segmect \leftarrow spared by $(n+d)-P(d)$ barges Let m be the largest monomials in lexarde monomial of degree d nt in I_{1} and let f be the largest roneul smaller than m with $f \in I$. f will be a minimal greats. First approximation: $J=\langle f-m$, other gens of $I\rangle$ (actually need to modify to add otter bromal cay if $f-m$ is $x_{1}^{2}-x_{0} x_{1}+x_{1} x_{2} \in I$, add $x_{1} x_{2}-x_{0} x_{2}$
$\operatorname{eg} P(t)=4 \quad n=2$.

$$
\begin{aligned}
& I=\left\langle x_{0}^{2}, x_{0} x_{1}, x_{1}^{3}\right\rangle \\
& I^{\prime}=\left\langle x_{0}, x_{1}^{4}\right\rangle \longleftarrow \text { lexicegraphic }
\end{aligned}
$$

are the anly Barel-fixed satwated ideal in $K\left[x_{0}, x_{1}, x_{2}\right]$ with Hilbet polynomal P.

$$
\begin{aligned}
& \bar{J}=\left\langle x_{0}^{2}, x_{0} x_{1}, x_{1}^{3}-x_{0} x_{2}^{2}\right\rangle \\
& \operatorname{in}(1,10,1) \\
& \operatorname{in}(J)=I \\
& \text { whio, },(0)(J)=\left\langle x_{0}^{2}, x_{0} x_{1}, x_{0} x_{2}^{2}, x_{1}^{4}\right\rangle
\end{aligned}
$$

which hos suturation $\left\langle x_{c}, x_{1}^{4}\right\rangle=I^{\prime}$.

Other Hilbert schemes
Let X be a proactive scheme 1 til $(X)(B)=\left\{\begin{array}{cc}\text { closed subscheres } & Z \leq X \times B \\ \text { with } Z & \text { flat e proper }\end{array}\right\}$
To shaw that this is representable, we fix an embedding $x \subseteq \mathbb{P}^{N}$, which defies a Hilbert polynomial for subschemes of X
Hill $_{p}(X)(B)=\left\{\right.$ closed subsches $Z \leq X \times B \leq P_{B}^{n}$ flat over B, where all fibres hove Willet pdyromial P?
We get (Hilbp(X) as a closed subschene of Hill(P^{N})

Lemma the locus $Z \subseteq \operatorname{Gu}(r, n)$ of r-dern subspaces of K^{n} contain a fixed vector $V \in K$ is closed.
P\&. Given $V \in G(r, n)$, pick a basis for V, and ante thin as the rows of an rio manx

$$
r \xlongequal[\equiv]{\equiv}) \leftarrow \text { rok er }
$$

If $V \in V$, the rack $o f$ an $(\underline{\underline{\underline{v}}}=$ is r, so all $(r+1) \times(r+1)$ miners vanish. Expand these along the first row - they have the form $\sum_{j} \pm V_{i j} P_{ \pm}$ so Z is the intersection of Gr (ri) in ts Plüchect an bedding with a subspace of $\mid P(P)-1$.
linear n' PI, for fred \underline{U}.
constuction of Hilbp (x)
Fx D at least the Gotzmann number of P and the deyrees of generaticrs of the icleal I_{x} of X. Fx a basis F_{1}, fr of ($\left.I_{x}\right)_{d}$ We uant $I_{x} \leqslant I$, so $f_{i} \in I_{D}$ for $1 \leqslant i \leqslant r$.
This dessontes Hill (X) stuation flemma.
This descries. Hilbp(X) as a closed subschene of Hilbp (IPN).
Question Does this depend an the chorie of embedding of x into IPN?
anower The decmpestian intc pieces indexed by

Y Hibp $\left(P^{n}\right)$ is always conrected, but Hibp (X) might nd be, even if X is zonnected
eg $X=V(f) \subseteq \mathbb{P}^{3}$ sonoth cubic swface. $H_{i l} b_{t+1}(X)$ is 27 pondo
$\operatorname{eg} X=V(E) \subseteq\left(P^{3}\right.$ smath conic.

$$
\begin{array}{r}
\operatorname{Hilb}_{t+1}(X)= \\
\mathbb{P}^{\prime} \geqslant \mathbb{P}^{\prime} \\
2 \text { rulings } \\
\end{array}
$$

