
TCC - HILBERT SCHEMES AND MODULI SPACES -
LECTURE 8

DIANE MACLAGAN

0.1. Clarification from last lecture. When we grade the polynomial
ring S = K[x1, . . . , xn] by an abelian group, SaSb means the vector
space spanned by the products {fg : f ∈ Sa, g ∈ Sb}. This is analogous
to the product ideal IJ , which is the ideal generated by the products
{fg : f ∈ I, g ∈ J}.

0.2. The moduli space of curves. Last time we saw the moduli
functor for the moduli space Mg of smooth curves of genus g:

B 7→ { isomorphism classes of flat proper families π : C → B whose

geometric fibers are smooth complete connected curves of genus g},

where C → B is isomorphic to C ′ → B if there is an isomorphism
φ : C → C ′ with

C
φ //

��

C ′

~~
B

We saw that this functor is not always representable. Today we will dis-
cuss its coarse moduli space, generalisations, and the Deligne-Mumford
compactification.

We first expand to the moduli space Mg,n of genus g curves with n
distinct marked points. This has the moduli functor

B 7→ { isomorphism classes of flat proper families π : C → B whose

geometric fibers are smooth complete connected curves of genus g

together with n non-intersecting sections σi : B → C for 1 ≤ i ≤ n},

where a pair (π : C → B, σ1, . . . , σn) is isomorphic to (π′ : C ′ →
B, σ′1, . . . , σ

′
n) if there is an isomorphism φ : C → C ′ that makes π : C →

B isomorphic to π′ : C ′ → B with σ′i = φ ◦ σi for 1 ≤ i ≤ n.
Warning: For an algebraic geometer, “marked” means labelled (so
point one is distinguishable from point two). Topologists also consider
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the space Mg,n, but do not label the points. This means that their
version of Mg,n is (essentially) our Mg,n/Sn.

This can lead to confusion. For example, M0,n is a smooth variety,
but a topologist thinks that is an orbifold, with singularities coming
from symmetric placements of the points.

0.3. Genus 0. The moduli functor forM0,n is representable by a smooth
variety when n ≥ 3. This is easy to describe. The only smooth curve
of genus zero is P1. The key fact we use is that the automorphism
group PGL(2) of P1 is uniquely three transitive: there is a unique
automorphism taking any three distinct ordered points on P1 to any
other three distinct ordered points. (Exercise!) This means that given
(P1, p1, . . . , pn), we can take p1 to [1 : 0], p2 to [1 : 1], and p3 to [0 : 1]
(“0, 1, and ∞”), and just record the locus p4, . . . , pn. These are distinct
points in P1 that are not equal to 0, 1, or ∞. Thus M0,3 is a point,
M0,4 = P1 \ {0, 1,∞}, and

M0,n = (P1 \ {0, 1,∞})n−3 \ diagonals

= (C∗)n−3 \ {xi = 1, xi = xj}
= Pn−3 \ {xi = 0, xi = xj}.

The first equality here comes from writing pj = [1 : xj−4] for 4 ≤ j ≤ n.
This exhibits M0,n as a the complement of a hyperplane arrangement
in Pn, and thus as a smooth variety. It has dimension n− 3.

0.4. Genus 1. We consider M1,1. Every smooth genus one curve with
one marked point p is isomorphic to V (y2z − f3(x, z)), where f3 =
(x − λ1z)(x − λ2z)(x − λ3z), and p = [0 : 1 : 0]. Smoothness implies
that the λi are distinct. Linear changes of coordinates in x and z give
isomorphisms of the curve, so we may assume that f3 is x(x− 1)(x− λ)
for λ 6= 0, 1. This is using the three-transitivity for Aut(P1) mentioned
above. Note, however, that there is no intrinsic order on λ1, λ2, λ3, so
there are several options for λ, depending on which of λ1, λ2, λ3 is taken
to 0, 1. These are the 6 different choices for the cross-ratios of λ1, λ2, λ3:
λ, 1− λ, 1/λ, 1/(1− λ), (λ− 1)/λ, λ/(λ− 1). The map

(1) λ 7→ 256(1− λ(1− λ))3

(λ(1− λ))2

is invariant under these choices. It has image A1, which is a coarse
moduli space for M1,1. The invariant (1) is called the j-invariant of the
curve, and M1,1 is the j-line. It has dimension 1.
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0.5. Genus 2. Every curve of genus 2 is hyperelliptic: it has a degree 2
map φ : C → P1, given by the two sections of the canonical divisor. This
morphism has 6 ramification points by the Riemann-Hurwitz formula,
and the curve can be reconstructed from these: on an affine chart
it is y2 =

∏6
i=1(x − λi). The λ1, . . . , λ6 are six (unordered) points

in P1, so give a point of M0,6/S6. Descriptions of the corresponding
invariants were given originally by Igusa. This means that dim(M2) =
dim(M0,6) = 3.

0.6. General g. In general dim(Mg,n) = 3g−3+n. Low genus cases are
deceptive, however. The moduli space Mg, is not rational (birational to
Pn for some n) or even unirational (admits a dominant map PN 99KMg)
for high g. In fact Mg has general type (the canonical divisor KMg

is big and effective) for g ≥ 22. Recall that Kodaira dimension (the
dimension of the canonical model of a variety) is a birational invariant,
so a variety cannot be simultaneously rational (Kodaira dimension zero)
and general type (Kodaira dimension equal to the dimension of the
variety).

0.7. Compactifications. The moduli spaces Mg and Mg,n are not
compact. This is easy to see: M0,4 = P1 \{0, 1, 2}. We now describe the
most popular compactification: the Deligne-Mumford compactification
of Mg,n, which is the moduli space of stable curves of genus g with n
marked points.

Definition 1. A curve C has a node at a point p, also called an

ordinary double point, if the completed local ring ÔC,p is isomorphic
to K[[x, y]]/〈xy〉. When we work over C this means that it has a
neighbourhood in the analytic topology looking like xy = 0. The curve
C is nodal if every point is smooth or a node.

When talking about the genus of a non-smooth curve, we could mean
either the geometric genus or the arithmetic genus. The geometric genus
is the genus of the normalization, which is smooth. For example, if two
irreducible components intersect in a node, the normalization is just
the two components, so the geometric genus is the sum of the genuses
of the components. However the geometric genus is not constant in flat
families. For example consider Y = V (xyz+ t(x3 + y3 + z3)) ⊆ P2×A1,
and π : Y → A1. For t 6= 0 the fiber Yt is a smooth plane cubic, so has
genus one. The special fiber Y0 is the union of three lines intersecting in
nodes, so has geometric genus zero. The arithmetic genus, by contrast,
is invariant in flat families over nice bases. When C ⊂ Pn has Hilbert
polynomial P (t) = dt + e, the arithmetic genus is 1 − e. Note that
this equals the geometric genus when C is smooth by Riemann Roch.
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Figure 1. The stable genus zero curves for n = 5
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The arithmetic genus is defined to be dimH1(C,OC). The genus of
a connected nodal curve is the genus of the dual graph of C plus the
genuses of each component. This is the number of nodes, minus the
number of irreducible components, plus one, plus the sum of the genuses
of the components.

Definition 2. A connected nodal curve C with n marked points
p1, . . . , pn is stable if the marked points are smooth points of C, and
every genus zero component has at least three special points (nodes
or marked points), and every genus one component has at least one
special point.

Stability of a curve implies that the automorphism group is finite. It
also implies that the dualizing sheaf ωC is ample.

Example 3. (1) Stable curves of arithmetic genus 0 are “trees
of P1”s, with at least three nodes or marked points on each
component. Figure 1 shows the options for n = 5, and Figure 2
shows the options for n = 6.

(2) Figure 3 shows the options for stable curves of (arithmetic)
genus two. The red numbers indicate the genus of each curve.
The green cartoons are the topological pictures in each case.

Definition 4. The moduli space of stable curves of genus g with n
marked points has moduli functor

B 7→ { isomorphism classes of flat proper families π : C → B whose

geometric fibers are stable complete connected curves of arithmetic genus g

together with n non-intersecting sections σi : B → C with images in the smooth

loci of fibers for 1 ≤ i ≤ n}.
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Figure 2. The stable genus curves for n = 6
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Figure 3. The stable curves for genus 2
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Theorem 5. There is a projective coarse moduli space M g,n parame-
terizing stable curves of arithmetic genus g with n marked points.

This is due to Deligne and Mumford [DM69], who actually introduce
the moduli stack. Projectivity is due to Knudsen [KM76, Knu83a,
Knu83b]. For g ≥ 2 Mumford constructs this coarse moduli space
as a GIT quotient of a locus in a Hilbert scheme of curves; this one
of the main motivations for the development of geometric invariant
theory (GIT). The genus zero case is simpler; in this case M0,n is a



6 DIANE MACLAGAN

fine moduli space, originally introduced by Grothendieck, and we have
several different explicit descriptions of it, including as blow-up of Pn−3.

We have not begun to scratch the surface of this topic. Some further
references are [Cav16], [HM98], [KV07].
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