
TCC - HILBERT SCHEMES AND MODULI SPACES -
LECTURE 7

DIANE MACLAGAN

1. Multigraded Hilbert schemes

The multigraded Hilbert scheme of Haiman and Sturmfels [HS04]
parameterises subschemes of affine space invariant under the action of
an abelian group.

Definition 1. A grading of a polynomial ring S = K[x1, . . . , xn] by an
abelian group A is given by a semigroup homomorphism deg : Nn → A.
This defines deg(xu) for u ∈ Nn, and induces a decomposition

S ∼= ⊕a∈ASa
with Sa · Sb ⊆ Sa+b for all a, b ∈ A. We will always assume that A is
finitely generated by deg(x1), . . . , deg(xn), as the subgroup generated
by these elements contains all degrees a ∈ A for which Sa 6= 0.

Note that every polynomial f ∈ S can be written uniquely as f =∑
a∈A fa, where fa ∈ Sa for each a, and all but finitely many of the fa

are zero.

Example 2. (1) A = Z, and deg : Nn → Z is given by deg(ei) = 1
for 1 ≤ i ≤ n, where e1, . . . , en are the standard basis vectors
for Nn. This is the “standard grading”.

(2) A = {0}, and deg : Nn → A is given by deg(u) = 0 for all
u ∈ Nn. This is the trivial grading.

(3) A = Z/3Z, and deg : N2 → A is given by

deg((1, 0)) = 1 mod 3, deg((0, 1)) = 2 mod 3.

(4) A = Z2, and deg : N4 → Z2 is given by

deg((1, 0, 0, 0)) = (3, 0), deg((0, 1, 0, 0)) = (2, 1),

deg((0, 0, 1, 0)) = (1, 2), deg((0, 0, 0, 1)) = (0, 3).

An ideal I ⊆ S is homogeneous with respect to a grading by A if I
is generated by homogeneous elements (there is a generating set where
each generator is an element of Sa for some a; the generators do not all
have to have the same degree). As with usual Z-gradings, an ideal I is
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homogeneous if and only if whenever f ∈ I, each of its graded pieces
{fa : a ∈ A} is also in I.

The key lemma that motivates discussing unusual gradings is the
following.

Lemma 3. A grading of S = K[x1, . . . , xn] by an abelian group A
corresponds to a linear action of A∗ = Homgp(A,K

∗) on An. An ideal
I ⊆ S is homogeneous with respect to the grading if and only if Spec(S/I)
is invariant under the group action.

The first example of this is the correspondence between the standard
grading and the diagonal action of K∗ on An. Given a grading deg on
S, we construct an action on S by φ · xi = φ(deg(ei)xi for φ ∈ A∗ =
Hom(A,K∗). For homogeneous polynomials f ∈ Sa, φ · f = φ(a)f for
all φ ∈ A∗, so if I is homogeneous we have φ · I = I.

Recall that an R-module M is locally free if there are f1, . . . , fr ∈ R
generating the unit ideal for which the localization Mfi is a free Rfi

module for 1 ≤ i ≤ r. For example, Z2/Z(2, 3) is a locally free Z-
module.

Definition 4. Fix a grading deg : Nn → A and a commutative ring
R. A homogeneous ideal I ⊆ R[x1, . . . , xn] is admissible if (S/I)a is a
locally free R-module of finite rank, constant on Spec(R), for all a ∈ A.

Example 5. (1) Let A = {0}. Then I is admissible if S/I is a
locally free R-module of constant finite rank.

(2) Let A = Z/3Z and n = 2, with deg(x) = 1 mod 3 and deg(y) =
2 mod 3. Let R = C. Then I = 〈x2, xy, y2〉 is admissible, as
(S/I)0 is free with basis 1, (S/I)1 is free with basis x, and (S/I)2
is free with basis y. However J = 〈x〉 is not admissible, a (S/I)0
is not finite rank as a C-module (finite dimensional as a vector
space over C).

Definition 6. The Hilbert function of an admissible ideal I ⊆ S =
R[x1, . . . , xn] is the function hI : A→ N given by

hI(a) = rank(S/I)a, for all a ∈ A,
where rank() means the rank as a locally free R-module.

Example 7. (1) When A = {0}, hI(0) is the rank of S/I.
(2) Let A = Z/3Z, and deg : N2 → A be given by deg((1, 0)) = 1

mod 3, and deg((0, 1)) = 2 mod 3. The Hilbert function of
I = 〈x2, xy, y2〉 is hI(0) = hI(1) = hI(2) = 1.

(3) Let A = Z2, and deg : N4 → A be given by deg(e1) = (3, 0),
deg(e2) = (2, 1), deg(e3) = (1, 2), deg(e4) = (0, 3). The ideal
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I = 〈x0x3 − x1x2, x0x2 − x21, x1x3 − x22〉 ⊆ C[x0, x1, x2, x3] is
homogeneous with respect to this grading, with Hilbert function
hI(a) = 1 if a1, a2 ≥ 0, a1 + a2 = 0 mod 3, and hI(a) = 0
otherwise.

Definition 8. Fix a function h : A → N. The multigraded Hilbert
functor HilbhS is the functor from the category of commutative rings to
the category of sets that sends a ring R to

{admissible ideals I ⊆ R[x1, . . . , xn] such that(R[x1, . . . , xn]/I)a

is locally free of rank h(a) for all a ∈ A}.

The functor takes a ring homomorphism φ : R→ S to the map of sets
that takes I ⊆ R[x1, . . . , xn] to IS[x1, . . . , xn].

Theorem 9 (Haiman-Sturmfels [HS04]). The functor HilbhS is rep-
resentable by a quasiprojective scheme, called the multigraded Hilbert
scheme. If the grading deg : Nn → A is positive (deg−1(0) = {0}), then
the multigraded Hilbert scheme HilbhS is projective.

Example 10. (1) When A = {0}, and h : {0} → N is given by
h(0) = N , then HilbhS = HilbN(An) is the Hilbert scheme of N
points in An.

(2) Fix A = Z, the standard grading deg(xi) = 1 for 1 ≤ i ≤ n, and
a Hilbert polynomial P . Let D be the Gotzmann number of P .
Define h : Z→ N by

h(a) =


0 a < 0(
n−1+a
n−1

)
0 ≤ a < D

P (a) a ≥ D

.

Then HilbhS is the usual Hilbert scheme HilbP (Pn−1). To see this,
we just need to construct a natural isomorphism between the
two moduli functors. This takes an ideal with Hilbert function
h in R[x1, . . . , xn] to its saturation with respect to 〈x1, . . . , xn〉.
The fact that this ideal defines a flat family over Spec(R) follows
from the local freeness condition.

(3) Let A = Zd, and fix deg : Nn → A. Let h : A→ N be given by
h(a) = 1 if Sa 6= 0, and h(a) = 0 if Sa = 0. Then HilbhS is the
toric Hilbert scheme [PS02].

(4) Let A be a finite abelian group, and suppose deg : Nn → A is
surjective. Let h : A→ N be defined by h(a) = 1 for all a ∈ A.
Then HilbhS is the G-Hilbert scheme for G = A [Nak01].
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Remark 11. Since every HilbP (Pn) is a multigraded Hilbert scheme,
every singularity type occurs on some multigraded Hilbert scheme.
However multigraded Hilbert schemes can be disconnected. The smallest
known example is due to Santos [San05], and is an example of a toric
Hilbert scheme (h(a) = 1 if Sa 6= 0) coming from a grading deg : N26 →
Z6.

2. Coarse moduli spaces and the moduli spaces of curves

In the first lecture we discussed moduli functors of the form

B 7→ { a family of objects being parameterised over a base B}/ ∼
where ∼ is a notion of equivalence. So far the equivalence relation ∼
has been trivial. We now consider an important special case where it is
not.

We first do a toy example (taken from [Cav16]). Consider in the
category of topological spaces the moduli problem of isomorphism
classes of unit length line segments in the plane up to rigid motion
(isometry) in the plane.

Formally, this takes a topological space X to the set of isomorphism
classes of families

Y ⊆ X × R2

π
��
X

where π is a surjective continuous function with π−1(x) a unit length
line segment in the plane. Here two families π : Y → X and π′ : Y ′ → X
are isomorphic if there is a homeomorphism i : Y → Y ′ such that

Y
i //

π   

Y ′

π′~~
X

commutes, and i|π−1(x) is a rigid motion of R2 for all x ∈ X. A
continuous function f : X → X ′ applied to a family π : Y → X induces
the pullback family π′ : Y ′ → X ′, where Y ′ = Y ×X X ′ = {(y, x′) :
π(y) = f(x)}.

We first note that if a fine moduli space M with universal family
π : U → M exists or this problem, then M must be a single point.
Indeed, if X is a point, there is only one family up to isomorphism, so
for any map X →M the pullback family U ×M X →M is isomorphic.
Since the map X →M corresponding to a family Y → X is unique for
a fine moduli space, M must be a point. This means that every family
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Y → X would be trivial, as Y = X×M U = X×U . However this is not
the case, as we can construct nontrivial families. For example, consider
the family over S1, which we parameterize by the angle θ, for which
the fiber over the point θ is the line segment with mid-point (1/2, 0)
making angle θ with the x-axis. This is not a trivial family.

The same phenomenon occurs for the moduli space of curves. We
would like to study smooth curves of genus g up to isomorphism. This
is the moduli space Mg. This is a central moduli space in algebraic
geometry, with deep roots in the nineteenth century. It is also studied in
topology as the moduli space of Riemann surfaces (where it is confusingly
often just called “moduli space”).

Formally we have the functor

(1)
B 7→ { isomorphism classes of flat proper families π : C → B whose

fibers are smooth complete connected curves of genus g}.

Here C → B is isomorphic to C ′ → B if there is an isomorphism
φ : C → C ′ with

C
φ //

��

C ′

~~
B

However this is not representable. The issue, as in our toy example, is
automorphisms of curves. A heuristic is that automorphisms are almost
always what causes problems with moduli functors being representable.

For example, suppose that there was a fine moduli space M for
smooth proper connected curves of genus one. Then we would have a
universal family π : U → M , and every family ψ : F → B of smooth
curves of genus one would come from π by pullback along a unique
morphism B →M .

Consider F = V (y2z − x3 − tz3) ⊆ P2 × (A1 \ {0}). The projection
π : F → (A1\{0}) is a family of smooth connected proper curves of genus
one. Note that every fiber is isomorphic to E = V (y2z − x3 − z3) (for
example, we may scale x by t1/3 and y by t1/2), so the map A1\{0} →M
must have image a point. However the family π is not the trivial family,
so cannot be the pullback.

See [HM98, §2.A] for more on why Mg is not representable.
A first solution to this problem is to ask only for a coarse moduli

space.
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Definition 12. A scheme M is a coarse moduli space for a moduli
functor F if there is a natural transformation ψM from F to Hom(−,M)
such that

(1) for all algebraically closed fields K, ψSpec(K) : F (Spec(K)) →
Hom(Spec(K),M) is a bijection of sets, and

(2) given another scheme M ′ and a natural transformation ψM ′ from
F to Hom(−,M ′) there is a unique morphism M → M ′ such
that the natural transformation Π : Hom(−,M)→ Hom(−,M ′)
satisfies ψM ′ = Π ◦ ψm.

The second condition implies that a coarse moduli space is unique.

The alternative (more common now) apprach is to instead consider
the moduli stack. That would require a whole module by itself, so we
will not consider that here.
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