TCC - HILBERT SCHEMES AND MODULI SPACES LECTURE 6

DIANE MACLAGAN

In the last lecture we saw that $\operatorname{Hilb}^{N}\left(\mathbb{A}^{2}\right)$ is smooth. In this lecture we discuss pathologies of Hilbert schemes.

1. The smoothable component of the Hilbert scheme of POINTS

We first show that the closure of the locus of N distinct points is an irreducible component of $\operatorname{Hilb}^{N}\left(\mathbb{A}^{d}\right)$ for any d. This locus has dimension $N d$, and is contained in an irreducible component, so it suffices to find a point in this locus with tangent space of dimension $N d$. That point will then be smooth and the dimension of the component is then $N d$.

We will show this for a complete intersection of N points in \mathbb{A}^{d}. Let

$$
I=\left\langle f, x_{2}, \ldots, x_{d}\right\rangle \subseteq S:=K\left[x_{1}, \ldots, x_{d}\right]
$$

where f is a polynomial of degree N in x_{1} with distinct roots. As discussed last time, the dimension of the tangent space to $[I]$ in $\operatorname{Hilb}^{N}\left(\mathbb{A}^{d}\right)$ is

$$
\operatorname{dim}_{K} \operatorname{Hom}_{S}(I, S / I) .
$$

An element $\phi \in \operatorname{Hom}(I, S / I)$ is determined by d elements of S / I, giving by $\phi(f), \phi\left(x_{2}\right), \ldots, \phi\left(x_{d}\right)$. Since $\operatorname{dim}_{K} S / I=N$, the space of such choices has dimension $N d$, so this is an upper bound for the dimension of $\operatorname{Hom}_{S}(I, S / I)$. As $N d$ is also our lower bound for the dimension of the tangent space, we must have $\operatorname{Hom}_{S}(I, S / I)=N d$, and so I is a smooth point of $\operatorname{Hilb} b^{N}\left(\mathbb{A}^{d}\right)$. Note that this implies that the syzygy constraints on the choices of $\phi(f)$ and $\phi\left(x_{i}\right)$ for $2 \leq i \leq n$ are trivial. This can be seen directly in examples: for example, the constraint that $x_{2} \phi\left(x_{3}\right)=x_{3} \phi\left(x_{2}\right)$ is immediate from the fact that both are zero in S / I.

The irreducible component containing the locus of N reduced points is called the smoothable component of the Hilbert scheme of points. It has an explicit description as a blow-up of $\left(\mathbb{A}^{d}\right)^{N} / S_{N}[$ ES14] .
2. The Hilbert scheme of points in \mathbb{A}^{3}

We first observe that the Hilbert scheme $\operatorname{Hilb}^{N}\left(\mathbb{A}^{3}\right)$ can be singular.

Example 1. Consider $N=4$. For a monomial ideal M, we can generalise the description we saw in the last lecture of the basis for the tangent space $\operatorname{Hom}_{S}(M, S / M)$ given by nonzero equivalence classes of arrows from minimal generators for M to monomials not in M. Let $M=\left\langle x^{2}, x y, x z, y^{2}, y z, z^{2}\right\rangle \subseteq S:=K[x, y, z]$. The equivalence classes are determined by monomial syzygies on the generators. A direct calculation shows that the arrows (generator, monomial not in M)

$$
\begin{array}{ccc}
\left(x^{2}, x\right) & \left(x^{2}, y\right) & \left(x^{2}, z\right) \\
(x y, x) & (x y, y) & (x y, z) \\
(x z, x) & (x z, y) & (x z, z) \\
\left(y^{2}, x\right) & \left(y^{2}, y\right) & \left(y^{2}, z\right) \\
(y z, x) & (y z, y) & (y z, z) \\
\left(z^{2}, x\right) & \left(z^{2}, y\right) & \left(z^{2}, z\right)
\end{array}
$$

are all nonzero and not equivalent, so $\operatorname{dim}_{S}(M, S / M)=18$. However M is on the smoothable component of $H i l b^{4}\left(\mathbb{A}^{3}\right)$ (for example, it is the initial ideal of the ideal of the 4 points $\{(0,0,0),(1,0,0),(0,1,0),(0,0,1)\})$, which has dimension $12=(4)(3)$, so $[M]$ is not a smooth point of $\operatorname{Hilb}^{4}\left(\mathbb{A}^{3}\right)$.

We next show that the Hilbert scheme $\operatorname{Hilb}^{N}\left(\mathbb{A}^{3}\right)$ is reducible for $N \gg 0$. We will show this by showing that a large Grassmannian of dimension greater than $3 N$ embeds into $\operatorname{Hilb}^{N}\left(\mathbb{A}^{3}\right)$ for $N \gg 0$.

Set $S=K[x, y, z]$. Fix a degree r and $0<s<\operatorname{dim}_{K} S_{r}$. Set $N=\sum_{i=0}^{r-1} \operatorname{dim}_{K} S_{i}+s=\binom{r-1+3}{3}+s=\binom{r+2}{3}+s$. Then for every subspace $L \subseteq S_{r}$ of dimension $\operatorname{dim}_{K} S_{r}-s$, the ideal $I_{L}=\langle L\rangle+S_{\geq r+1}$ has dimension $\operatorname{dim}_{K}\left(S / I_{L}\right)=N$. This defines a flat family over the Grassmannian $\operatorname{Gr}\left(\operatorname{dim}_{K} S_{r}-s, S_{r}\right)$, and thus an embedding of this Grassmannian $\operatorname{Gr}\left(\binom{r+2}{2}-s,\binom{r+2}{2}\right)$ into $\operatorname{Hilb}^{N}\left(\mathbb{A}^{3}\right)$.

To show that $\operatorname{Hilb}^{N}\left(\mathbb{A}^{3}\right)$ is reducible, it suffices to show that we can choose r, s so that the dimension of this Grassmannian, $s\left(\binom{r+2}{2}-s\right)$, is larger than the dimension $3 N=3\binom{r+2}{3}+3 s$ of the smoothable component.

To simplify the computation, choose $r \equiv 3 \bmod 4$, so $\operatorname{dim} S_{r}=$ $\binom{r+2}{2}=1 / 2(r+2)(r+1)$ is even, and choose $s=1 / 2\binom{r+2}{2}$. Then

$$
s\left(\binom{r+2}{2}-s\right)=1 / 4\binom{r+2}{2}^{2}
$$

and

$$
3\binom{r+2}{3}+s=3\binom{r+2}{3}+3 / 2\binom{r+2}{2} .
$$

The former is a polynomial of degree 4 in r, while the latter is a polynomial of degree 3. Thus for $r \gg 0$ the dimension of the Grassmannian is larger, so $\operatorname{Hilb}^{N}\left(\mathbb{A}^{3}\right)$ is reducible.

A careful use of an argument of this form by Iarrobino [Iar72] [Iar84] shows that $\operatorname{Hilb}^{d}\left(\mathbb{A}^{3}\right)$ is reducible for $d \geq 78$. It is known to be irreducible for $d \leq 11$ [DJNT17], but the precise transition point is unknown. The story is simpler for larger $d: \operatorname{Hilb}^{N}\left(\mathbb{A}^{d}\right)$ is reducible for $N \geq 8$ for $d \geq 4$, and irreducible for $N<8$ in this range; see [CEVV09].

For smoothness, the story is (surprisingly!) simpler, thanks to very recent work of Skjelnes and Smith [RSaGGS20], who completely characterise for which Hilbert polynomials $\operatorname{Hilb}_{P}\left(\mathbb{P}^{n}\right)$ is a smooth variety.

3. Murphy's law for Hilbert schemes

The pathologies we have discussed so far are fairly tame. We now discuss how bad things can be. The informal slogan is:
Murphy's Law for Hilbert Schemes "There is no geometric possibility so horrible that it cannot be found generically on some component of some Hilbert scheme".

This is a quote from [HM98, $\S 1 \mathrm{D}]$. This expectation goes back to Mumford [Mum62]. Mumford showed that $\operatorname{Hilb}_{14 t-23}\left(\mathbb{P}^{3}\right)$ has an irreducible component that is everywhere nonreduced, even though the component generically parameterizes smooth irreducible curves of degree 14 and genus 24 . The parameterized curves are those lying on a smooth cubic surface S and linearly equivalent in S to $4 H+2 L$, where H is the hyperplane divisor, and L is a line on S. See [EH00] exercises VI-35, VI-36, and VI-37.

The slogan was formalised by Vakil in [Vak06]. A morphism $\phi: X \rightarrow$ Y of schemes of finite type over K is smooth if it is flat, and every fiber is geometrically regular (so still nonsingular when we pass to the algebraic closure). We say $\phi:(X, p) \rightarrow(Y, q)$ is a smooth morphism of pointed schemes if $p \in X, q \in Y, \phi$ is a smooth morphism, and $\phi(p)=q$.

Definition 2. A singularity type is an equivalence class of pointed schemes defined by setting $(X, p) \sim(Y, q)$ if $\phi:(X, p) \rightarrow(Y, q)$ is a smooth morphism.

For example, the projection map $\phi: X \times \mathbb{A}^{n} \rightarrow X$ is smooth, so $\left(X \times \mathbb{A}^{n},(p, 0)\right) \sim(X, p)$ for any point $p \in X$.

Definition 3. We say that Murphy's law holds for a moduli space \mathcal{M} if for every singularity type of pointed schemes appears on \mathcal{M}. This means that there is a point $q \in \mathcal{M}$ with the completed local ring $\widehat{\mathcal{O}_{\mathcal{M}, q}}$
isomorphic to $\widehat{\mathcal{O}_{X, p}}$ for some representative (X, p) of the singularity type.

Vakil's result is then:
Theorem 4. [Vak06] The Hilbert scheme $\operatorname{Hilb}\left(\mathbb{P}^{n}\right)$ satisfies Murphy's law for large n. In particular, this holds for the Hilbert scheme of surfaces in \mathbb{P}^{4}.

Note that we need to talk about "singularity types" here instead of just asking that a singularity appears. For example, if (X, p) is a double point p, which has local ring $K[x] /\left\langle x^{2}\right\rangle$, for this to appear in some component of some Hilbert scheme we would have to have the local ring to $\operatorname{Hilb}_{P}\left(\mathbb{P}^{n}\right)$ at some point $[X]$ to be zero-dimensional. Since PGL $(n+1)$ acts on $\operatorname{Hilb}_{P}\left(\mathbb{P}^{n}\right), X$ must be fixed by this action, so the only possibility is that $X=\mathbb{P}^{n}$, or $X=\emptyset$, so $P=\binom{t+n}{n}$, or $P=0$. In either case $\operatorname{Hilb}_{P}\left(\mathbb{P}^{n}\right)$ is a single reduced point. Thus (X, p) does not appear in any Hilbert scheme. However we can still look for something else in the equivalence class (such as $\left(\operatorname{Spec}\left(K\left[x_{1}, \ldots, x_{n}\right] /\left\langle x_{1}^{2}\right\rangle\right),(0, \ldots, 0)\right)$ for some $n>1$).

The Murphy's law result implies the existence of non-reduced points on the Hilbert scheme. To see this, take $(X, p)=\left(\operatorname{Spec}\left(K[x] /\left\langle x^{2}\right\rangle\right), 0\right)$. Any (Y, q) in the same equivalence class has $\mathcal{O}_{Y, q}$ non-reduced. It also implies the existence of components of the Hilbert scheme that only exist in characteristic $p>0$. Formally, we treat the Hilbert scheme over $\operatorname{Spec}(\mathbb{Z})$; everything goes through, as wherever we seemed to actually need a field K as opposed \mathbb{Z}, we were dealing with fibers. We then want to show the existence of irreducible components that lie entirely over the fiber over $\langle p\rangle \subseteq \mathbb{Z}$. For this, take $(X, p)=(\operatorname{Spec}(\mathbb{Z} / p \mathbb{Z}), 0)$. If $(Y, q) \sim(X, p)$, then $p \mathcal{O}_{Y, q}=0$, so any point with this singularity type lives only in characteristic p.

One case left open in Vakil's original paper is whether the Hilbert scheme of points satisfies Murphy's law. This has recently been resolved by Jelisiejew.

Theorem 5. [Jel20] Murphy's law holds for $\operatorname{Hilb}_{p t s}\left(\mathbb{A}^{16}\right)$.
The key part of the proof is to reduce to another moduli space where Murphy's law also holds. This the moduli space of point-line incidences in \mathbb{P}^{2}.

An incidence scheme of points and lines in \mathbb{P}^{2} is a locally closed subscheme of $\left(\mathbb{P}^{2}\right)^{m} \times\left(\mathbb{P}^{2 \vee}\right)^{n}=\left\{\left(p_{1}, \ldots, p_{m}, l_{1}, \ldots, l_{n}\right)\right\}$ parameterizing $m \geq 4$ distinct marked lines and n distinct lines in \mathbb{P}^{2} with prescribed incidences and nonincidences (p_{i} lies on line l_{j} or p_{i} does not lie on
line l_{j}). We normalise by setting $p_{1}=[1: 0: 0], p_{2}=[0: 1: 0]$, $p_{3}=[0: 0: 1]$, and $p_{4}=[1: 1: 1]$; this is quotienting by the PGL(3) action, under the assumption that no three of these points are collinear. We also require any pair of lines to contain a common marked point, and any line to contain at least three marked points.

Example 6. Consider the line arrangement (where the circle is a line) shown in Figure 1.

Figure 1.
This diagram encodes the required incidences and non-incidences. A closed point of the incidence scheme has the form

$$
\left(\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & a_{1} & b_{1} & c_{1} \\
0 & 1 & 0 & 1 & a_{2} & b_{2} & c_{2} \\
0 & 0 & 1 & 1 & a_{3} & b_{3} & c_{3}
\end{array}\right],\left[\begin{array}{lllllll}
d_{1} & e_{1} & f_{1} & g_{1} & h_{1} & i_{1} & j_{1} \\
d_{2} & e_{2} & f_{2} & g_{2} & h_{2} & i_{2} & j_{2} \\
d_{3} & e_{3} & f_{3} & g_{3} & h_{3} & i_{3} & j_{3}
\end{array}\right]\right) .
$$

Entering the incidence equations, we get the following:
(1) Point p_{1} lies on line 1 , so $(1,0,0) \cdot\left(d_{1}, d_{2}, d_{3}\right)=d_{1}=0$. Since p_{3} also lies on line $1, d_{3}=0$, so we may set $d_{2}=1$. Since p_{6} lies on line $1, b_{2}=0$.
(2) Points p_{3}, p_{4}, p_{5} lie on line 2, so $e_{3}=0=e_{1}+e_{2}=0$, and thus $\left[e_{1}: e_{2}: e_{3}\right]=[1:-1: 0]$. In addition, $a_{1}-a_{2}=0$.
(3) Points p_{2}, p_{3}, p_{7} lie on line 3 , so $f_{2}=f_{3}=0$, we may set $f_{1}=1$, and $c_{1}=0$.
(4) Points p_{2}, p_{4}, p_{6} lie on line 4 , so $g_{2}=g_{1}+g_{3}=0$, we may set $g_{1}=1$, and $i_{1}-i_{3}=0$.
(5) Points p_{1}, p_{4}, p_{7} lie on line 5 , so $h_{1}=h_{2}+h_{3}=0$, we may set $h_{2}=1$, and $c_{2}-c_{3}=0$.
(6) Points p_{1}, p_{2}, p_{5} lie on line 6 , so $i_{1}=i_{2}=0$, and $a_{3}=0$.

This reduces the choices to

$$
\left(\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right],\left[\begin{array}{rrrrrrr}
0 & 1 & 1 & 1 & 0 & 0 & j_{1} \\
1 & -1 & 0 & 0 & 1 & 0 & j_{2} \\
0 & 0 & 0 & -1 & -1 & 1 & j_{3}
\end{array}\right]\right)
$$

Finally, points p_{5}, p_{6}, p_{7} lie on line 7 , so $j_{1}+j_{2}=j_{1}+j_{3}=j_{2}+j_{3}=0$. This is possible if and only if $\operatorname{char}(K)=2$. So the incidence scheme is one reduced point in characteristic 2 , and empty if $\operatorname{char}(K) \neq 2$.

Theorem 7 (Mnëv-Sturmfels universality). The disjoint union of all incidence schemes satisfies Murphy's law. Specifically, given a singularity (Y, q), there is a point p of an incidence scheme X and a smooth morphism $\pi:(X, p) \rightarrow(Y, q)$.

A version is also found in the work of Laffourge. See [LV13] [Car15, §4] for expositions. This is actually saying that realisation spaces of matroids satisfy Murphy's law.

The idea of the proof is as follows. First reduce to the case that $Y=\operatorname{Spec}\left(K\left[x_{1}, \ldots, x_{n}\right] /\left\langle f_{1}, \ldots, f_{r}\right\rangle\right)$. Encode the polynomials f_{i} in terms of atomic operations:
(1) $x_{i}=x_{j}$;
(2) $x_{i}=-x_{j}$;
(3) $x_{i}+x_{j}=x_{k}$;
(4) $x_{i} x_{j}=x_{k}$,
by adding extra variables if necessary.
For example,

$$
\begin{aligned}
K\left[x_{1}\right] /\left\langle x_{1}^{2}+x_{1}+1\right\rangle & \cong K\left[x_{1}, x_{2}\right] /\left\langle x_{2}-x_{1}^{2}, x_{2}+x_{1}-1\right\rangle \\
& \cong K\left[x_{1}, x_{2}, x_{3}\right] /\left\langle x_{2}-x_{1}^{2}, x_{1}+x_{2}-x_{3}, x_{3}+1\right\rangle
\end{aligned}
$$

In this last expression the polynomials use the fourth, third, and second atomic operations respectively. We then find point-line configurations that encode these atomic operations individually, and combine.

References

[CEVV09] Dustin A. Cartwright, Daniel Erman, Mauricio Velasco, and Bianca Viray, Hilbert schemes of 8 points, Algebra Number Theory 3 (2009), no. 7, 763-795.
[Car15] Dustin Cartwright, Lifting matroid divisors on tropical curves, Res. Math. Sci. 2 (2015), Art. 23, 24.
[DJNT17] Theodosios Douvropoulos, Joachim Jelisiejew, Bernt Ivar Utstøl Nødland, and Zach Teitler, The Hilbert scheme of 11 points in \mathbb{A}^{3} is irreducible, Combinatorial algebraic geometry, Fields Inst. Commun., vol. 80, Fields Inst. Res. Math. Sci., Toronto, ON, 2017, pp. 321-352.
[EH00] David Eisenbud and Joe Harris, The geometry of schemes, Graduate Texts in Mathematics, vol. 197, Springer-Verlag, New York, 2000.
[ES14] Torsten Ekedahl and Roy Skjelnes, Recovering the good component of the Hilbert scheme, Ann. of Math. (2) 179 (2014), no. 3, 805-841, DOI 10.4007/annals.2014.179.3.1. MR3171755
[HM98] Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998.
[Iar72] A. Iarrobino, Reducibility of the families of 0-dimensional schemes on a variety, Invent. Math. 15 (1972), 72-77.
[Iar84] Anthony Iarrobino, Compressed algebras: Artin algebras having given socle degrees and maximal length, Trans. Amer. Math. Soc. 285 (1984), no. 1, 337-378.
[Jel20] Joachim Jelisiejew, Pathologies on the Hilbert scheme of points, Invent. Math. 220 (2020), no. 2, 581-610, DOI 10.1007/s00222-019-00939-5. MR4081138
[MS05] Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005.
[Mum62] David Mumford, Further pathologies in algebraic geometry, Amer. J. Math. 84 (1962), 642-648.
[LV13] Seok Hyeong Lee and Ravi Vakil, Mnëv-Sturmfels universality for schemes, A celebration of algebraic geometry, Clay Math. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 2013, pp. 457-468.
[RSaGGS20] Roy Skjelnes and Gregory G. Smith, Smooth Hilbert schemes: their classification and geometry, 2020. arXiv:2008.08938.
[Vak06] Ravi Vakil, Murphy's law in algebraic geometry: badly-behaved deformation spaces, Invent. Math. 164 (2006), no. 3, 569-590.

