
TCC - HILBERT SCHEMES AND MODULI SPACES -
LECTURE 5

DIANE MACLAGAN

1. The tangent space to HilbP (Pn)

Recall that the Zariski tangent space to a scheme X at a K-rational
point p is

HomK(m/m2, K),

where m = mX,p is the maximal ideal of the local ring OX,p, and
K = κ(p) = OX,p/mX,p.

Lemma 1. A K[ε]/〈ε2〉-valued point of X is a K-rational closed point
p of X together with an element of the Zariski tangent space to X at p.

Proof. The K-algebra homomorphism K[ε]/〈ε2〉 → K sending ε to 0
induces a morphism Spec(K) → Spec(K[ε]/〈ε2〉). Thus a K[ε]/〈ε2〉
-valued point of X, which is an element of Hom(Spec(K[ε]/〈ε2〉), X)
determines a morphism Spec(K) → X, and so a K-rational closed
point. An element of Hom(Spec(K[ε]/〈ε2〉), X) also gives a local homo-
morphism OX,p → K[ε]/〈ε2〉, so gives a map mp → 〈ε〉 that sends m2

to 0. This induces a map mp/m
2
p → 〈ε〉 ∼= K, which an element of the

Zariski tangent space.
Conversely, given p ∈ X and t : mp/m

2
p → 〈ε〉 ∼= K, note that

OX,p/m2
p
∼= OX,p/mp ⊕mp/m

2
p.

Define φ : OX,p/m2 → K[ε]/〈ε2〉 as the identity on OX,p/mp
∼= K, and

t on mp/m
2
p. This induces a homomorphism OX,p → K[ε]/〈ε2〉, so a

morphism Spec(K[ε]/〈ε2〉)→ X. �

Thus the tangent space to HilbP (Pn) at a point [X] is an element of
Hom(Spec(K[ε]/〈ε2〉,HilbP (Pn)) that maps Spec(K) to [X]. This is in
natural correspondence with the set of flat families

X ⊆ PnK[ε]/〈ε2〉

��
Spec(K[ε]/〈ε2〉).
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where the fiber over 〈ε〉 is X. The space of such flat families is called
the space of first order deformations of X in PnK .

Definition 2. The normal sheaf NX/Y to a closed subscheme X of a
scheme Y is the sheaf

NX/Y = HomOX
(I/I2,OX) = HomOY

(I,OX)

where I is the ideal sheaf of X in Y .

If X is a subscheme of An defined by an ideal I ⊆ S, then the normal
sheaf is the sheafification of HomS(I, S/I).

Theorem 3. The space of first-order deformations of a closed sub-
scheme X of a scheme Y is the space of global sections of the normal
sheaf NX/Y .

We will apply this next when Y = A2, so we give the key idea there.
A family X ⊆ A2 × Spec(K[ε]/〈ε2〉 over Spec(K[ε]/〈ε2〉 has

X = Spec(K[x, y, ε]/〈ε2〉+ J),

where J = 〈f1 + εg1, . . . , fk + εgk〉 for fi, gj ∈ K[x, y], and we assume
that the ideal I of X equals 〈f1, . . . , fk〉. The key idea of the proof is
to show that there is an S := K[x, y]-module homomorphism I → S/I
given by φ(fi) = gi if and only if the family is flat. See [EH00, Theorem
VI-29] for a full proof.

2. Smoothness of HilbN(A2)

We now show that the Hilbert scheme HilbN(A2) of N points in the
plane is smooth. This is an open locus in HilbP (P2) for P (t) = N . This
is the main special case of the result of Fogarty [Fog68] that Hilbert
schemes of points in smooth surfaces are smooth and irreducible. We
follow the approach of Haiman [Hai98]; see also [MS05, Chapter 18].

2.1. The singular locus (if nonempty) contains a monomial
ideal. This follows from considering the Gröbner degeneration flat
family. Given an ideal I ⊆ K[x, y] with dimK S/I = N , and w =

(w1, w2) ∈ N2, we construct the ideal It ⊆ K[x, y, t] by It = 〈f̃ : f ∈ I〉,
where for f =

∑
cijx

iyj we have f̃ = tmax(w·(i,j) ∑ cijt
−w1i−w2jxiyj ∈

K[x, y, t]. The family

Spec(K[x, y, t]/It)

��
A1
t



TCC - HILBERT SCHEMES AND MODULI SPACES - LECTURE 5 3

Figure 1.

is a flat family, so gives a morphism φ : A1 → HilbN(A2).
Suppose that [I] is a singular point of HilbN (A2). For t 6= 0 the fiber

over t ∈ A1 of the Gröbner family is isomorphic to [I], has the same local
dimension, and isomorphic tangent space, since [tI] is obtained from
I by scaling the variables by powers of t. Thus these are all singular
points as well. Since the singular locus of any scheme is closed, the
special fiber over t = 0 must also be singular. This fiber is given by the
initial ideal inw(I), which is a monomial ideal for sufficiently general w.
Thus if the singular locus is nonempty, it contains a monomial ideal.

This claim is actually true for any Hilbert scheme HilbP (Pn), or
HilbP (An).

2.2. The dimension of HilbN (A2) at a monomial ideal is at least
2N . A monomial ideal M ⊆ S = K[x, y] has minimal generators
{xikyjk : 0 ≤ k ≤ s}, where ik > ik+1, jk < jk+1 for 0 ≤ k < s.

If dimK(S/M) = N , then j0 = is = 0. We can represent M by its
staircase diagram; see Figure 1.

The number of boxes under the staircase in this picture is N . This
is the Young diagram/Ferrers shape of a partition of N . For example,
for M = 〈x4, x3y, xy2, y4〉 ⊆ S we have N = 9 = 4 + 3 + 1 + 1. The
partition determines the monomial ideal, so the number of monomial
ideals in HilbN(A2) is the number of partitions of N (see https://

oeis.org/A000041).
Fix a monomial idealM with dimK(S/M) = N . For ease of exposition

we assume that char(K) = 0 in what follows (exercise: generalise this to
K an arbitrary infinite field). Consider the set {(i, j) ∈ N2 : xiyj 6∈M}
as a collection of N points in A2, and let I be the radical ideal of all
polynomials vanishing at these points. For each generator xikyjk of M ,
construct the polynomial

fk =

ik−1∏
l=0

(x− l)
jk−1∏
l=0

(y − l).

Note that fk ∈ I for all 0 ≤ k ≤ s. For any generic w = (w1, w2) ∈ N2

we can construct the Gröbner degeneration defined by the ideal Ĩ =
〈f̃ : f ∈ I〉 ⊆ K[x, y, t] as in previous lectures. We have the initial term

f̃k|t=0 = xikyjk , so M ⊆ Ĩ0. Since M and the initial ideal Ĩ0 both have
colength N , we must have equality. This means that M is the limit of
a family of N distinct points, so lies on the same irreducible component
as the locus of N distinct points in HilbN (A2). This locus is isomorphic

https://oeis.org/A000041
https://oeis.org/A000041
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to {((x1, y1), . . . , (xN , yN)) ∈ (A2)N : (xi, yi) 6= (xj, yj) for i 6= j}/SN ,
so has dimension 2N .

2.3. The tangent space at a monomial ideal is 2N-dimensional.
An element φ ∈ Hom(M,S/M) is given by choosing where φ sends the
generators of M , subject to the requirement that these choices should
be compatible.

Example 4. For M = 〈x4, x3y, xy2, y4〉 we need φ(x4y) = yφ(x4) =
xφ(x3y). This comes from a syzygy of M .

Definition 5. The (first) syzygy module of a graded S-module P is
the module of relations among the minimal generators of P . If P is
generated by p1, . . . , pm, then

Syz(P ) = {(r1, . . . , rm) ∈ Sm :
m∑
i=1

ripi = 0.

This fits in the exact sequence:

0← P ← Sm ← Syz(P )← 0.

Example 6. The element (−y, x, 0, 0) ∈ Syz(M) ⊆ S4 for the mono-
mial ideal M of Example 4.

For (f0, . . . , fs) ∈ Ss+1 to define an element φ ∈ Hom(M,S/M) we
need

∑s
i=0 rifi = 0 ∈ S/M for all elements of Syz(M).

Lemma 7. The syzygy module of a monomial ideal M ⊆ K[x, y] is
generated by

xik−1−ikek + (−yjk−jk−1)ek−1

for 1 ≤ k ≤ s.

Example 8. For the M of Example 4 the syzygy module Syz(M) is
generated by

{(−y, x, 0, 0), (0,−y, x2, 0), (0, 0,−y2, x)}.

As a consequence, we have

Hom(M,S/M) = {(f0, . . . , fs) ∈ Ss+1 with no terms of any fi in M,

and xik−1−ikfk = yjk−jk−1fk−1 ∈ S/M for 1 ≤ k ≤ s}.

(1)

Write m1, . . . ,mN for the monomials not in M . We can write fk =
xikyjk +

∑N
l=1 aklml for 0 ≤ k ≤ s.
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Example 9. Let M = 〈x3, xy, y2〉 ⊆ K[x, y]. Then N = 4, and we
write m1 = 1, m2 = x, m3 = x2, m4 = y. We set

f0 = a01 + a02x+ a03x
2 + a04y

f1 = a11 + a12x+ a13x
2 + a14y

f2 = a21 + a22x+ a23x
2 + a24y

The conditions (1) then say that we must have yf0 = x2f1 in S/M , so
a01 = a11 = 0, and xf1 = yf2, so a11 = a21 = a22 = 0, so the choice
becomes

f0 = a02x+ a03x
2 + a04y

f1 = a12x+ a13x
2 + a14y

f2 = a23x
2 + a24y

This means that dimK Hom(I, S/I) = 8 = 2N .

We represent akl as an arrow from xikyjk to ml, and write (k,ml) for
the arrow.

The condition (1) says that if an arrow can be moved right and down
keeping the tail on the boundary, and the head below the staircase,
then the corresponding coefficient akl is the same. If the head goes past
the the x-axis or the y-axis then akl = 0, and we call this a zero arrow.
Note that if (k,ml) is a nonzero arrow, then either the x exponent of
ml is at least ik, or the y exponent of ml is at least jk (but not both).
We call the arrow positive in the first case, and negative in the second.

Write

T (M) = {(k,mj) : 0 ≤ k ≤ s, 1 ≤ j ≤ N, xik−1−ikmj ∈M if (k,mj)

is positive, and yjk+1−jkmj ∈M if (k,mj) is negative}.

This is the set of nonzero arrows moved “as far up or down as
possible”.

We have
dimK Hom(M,S/M) = |T (M)|.

We now show that |T (M)| = 2N . We will associate to each box of the
Young diagram two arrows.

Given a positive arrow (k,mj), move it right until the head is about
to leave the Young diagram. To each such translated arrow we associate
the box of the Young diagram with the same x coordinate as the tail,
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and the same y coordinate as the head. Given a negative arrow (k,mj),
move it up until the head is about to leave the Young diagram. To each
translated arrow, we associate the box of the Young diagram with the
same x coordinate as the head, and the same y coordinate as the tail.
Note that there are exactly two arrows associated to each box of the
Young diagram by this procedure, so |T (M)| = 2N .
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