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1. Connectness

Our next goal is:

Theorem 1 (Hartshorne [Har66]). The Hilbert scheme HilbP (Pn) is
connected.

We will actually show that it is rationally chain connected: for any
closed point p on HilbP (Pn) there is a sequence of rational curves
C1, . . . , Cs, where p ∈ C1, Ci∩Ci+1 6= ∅, and the point [Ilex] correspond-
ing to the lexicographic ideal lives in Cs. We will follow the proof given
in [PS05]. One notable aspect of this proof is that one does not actually
need any details of the existence of the Hilbert scheme.

1.1. Gröbner degenerations. The key technique is that of Gröbner
degeneration. Given a homogeneous ideal I ⊆ K[x0, . . . , xn] and a
weight vector w ∈ Nn, we construct the ideal

It = 〈f̃ : f ∈ I〉 ⊆ K[x0, . . . , xn, t],

where for f =
∑
cuxu we have f̃ = tmaxw·u∑ cut

−w·uxu.

Example 1. Let I = 〈x0x2 − x21〉 ⊆ K[x0, x1, x2]. For w = (10, 5, 1),

and f = x0x2 − x21 we have f̃ = t11(t−11x0x2 − t−10x21) = x0x2 − tx21.
While for arbitrary ideals we do not have Ĩ = 〈f̃ : f is a minimal generator of I〉,
for principal ideals it is true, so Ĩ = 〈x0x2 − tx21〉. For w = (1, 5, 1) we
have Ĩ = 〈t10(t−2x0x2 − t−10x21〉 = 〈t8x0x2 − x21〉.

The ideal Ĩ defines a subscheme of Pn×A1, and the inclusion K[t]→
K[x0, . . . , xn, t]/Ĩ induces a morphism to A1:

Proj(K[x0, . . . , xn, t]/I) ⊆ Pn × A1

π
��

A1

Here we take Proj with respect to the grading deg(xi) = 1, deg(t) = 0.
The key fact is that π is a flat family, with all fibers over t 6= 0
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isomorphic to Proj(K[x0, . . . , xn]/I), and fiber over t = 0 equal to
Proj(K[x0, . . . , xn/ inw(I)), where inw(I) is the initial ideal in the sense
of Gröbner theory. See [Eis95, Chapter 15] for details on this. More
information about computing these degenerations can be found in
[Stu96]. The classic reference for the basics of Gröbner bases is [CLO15].

Example 2. Continuing Example 1, note that I defines the image of the
Veronese embedding of P1 into P2. The first degeneration breaks that
into the union of the two coordinate lines x0 = 0 and x2 = 0, while the
second degenerates it to a double line supported on x1 = 0. To see that
these are flat, note that in the first case the quotient K[x0, x1, x2, t]/Ĩ is
a free K[t]-module with basis the monomials in x0, x1, x2 not divisible
by x0x2, while in the second case the quotient is a free K[t]-module
with basis the monomials not divisible by x21.

1.2. Step 1: Reduce to the case that I is Borel-fixed.

Definition 1. The group GL(n+ 1, K) acts on K[x0, . . . , xn] by linear
change of coordinates:

xi 7→
n∑
j=0

ajixj.

For example,(
1 2
3 4

)
· x20 + 2x0x1 + x21 = (x0 + 3x1)

2 + 2(x0 + 3x1)(2x0 + 4x1) + (2x0 + 4x1)
2

= 9x20 + 42x0x1 + 49x21.

We consider the induced action of the Borel group of upper triangular
matrices.

Lemma 2. When char(K) = 0, an ideal I ⊆ K[x0, . . . , xn] is fixed by
the action of the Borel group if and only if

(1) I is a monomial ideal, and
(2) for all monomials xu ∈ I, and xi dividing xu, we have xj/xix

u ∈
I for all j < i.

Ideals satisfying the second condition of the lemma are called strongly
stable. The fact that I is a monomial ideal is actually a consequence
of the fact that I is fixed by the algebraic torus of diagonal matrices
contained in the Borel group. Diagonal matrices act on the polynomial
ring by scaling variables. As an example to see that this implies that
the ideal must be monomial, consider an ideal I containing x0 + x1 that
is fixed by the torus action. Then (1, t) · (x0 + x1) = x0 + tx1 ∈ I for
all t, so (x0 + x1)− (x0 + tx1) = (1− t)x1 ∈ I, so x1 ∈ I, and so x0 ∈ I.
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Making a set-theoretic argument like this does assume that the field is
infinite; to handle arbitrary fields one needs to be more careful about
the definitions of these actions.

Example 3. The ideal 〈x20, x0x1, x21〉 ⊆ K[x0, x1, x2] is Borel fixed,
while 〈x20, x21, x22〉 is not. In the second case, note that 0 < 1, but
x0/x1(x

2
1) 6∈ 〈x20, x21, x22〉.

We use the following two facts about Borel-fixed ideals:

(1) The saturation of a Borel-fixed ideal is Borel-fixed, and
(2) There are only finitely many saturated Borel-fixed ideals with a

fixed Hilbert polynomial.

Proposition 3. For a fixed homogeneous ideal I ⊆ K[x0, . . . , xn] and
general w there is an open set U ⊆ GL(n+ 1, K) for which inw(gI) is
constant for g ∈ U . This is Borel-fixed if w0 > w1 > · · · > wn.

The ideal inw(gI) for g ∈ U is called the generic initial ideal of I
with respect to w. For details, see [Eis95, Chapter 15].

Example 4. Let I = 〈x1 + x2〉 ⊆ K[x0, x1, x2]. For g = (gij) ∈
GL(3, K),

gI = 〈g01x0 + g11x1 + g21x2 + g02x0 + g12x1 + g22x2〉
= 〈(g01 + g02)x0 + (g11 + g12)x1 + (g21 + g22)x2〉.

Thus for w = (10, 5, 1), and the open set U = {g01+g02 6= 0} ⊆ GL(3, K)
we have inw(gI) = 〈x0〉. Note that this is Borel-fixed.

This means that given a point [I] ∈ HilbP (Pn) corresponding to a
homogeneous ideal I, we can choose a path from I to g ∈ U , which
gives a path from [I] to [gI] in HilbP (Pn). This is part of the power
of the functor language; giving a family over A1 is the same as giving
a morphism from A1 to the Hilbert scheme. We can then take the
Gröbner degeneration that takes [gI] to [inw(gI)] for general w. Thus
[ginw(I)], which is Borel fixed, is in the same connected component of
HilbP (Pn) as I.

1.3. Step 2: Move towards the lexicographic ideal. If I is a Borel
fixed ideal, but is not the lexicographic ideal, then we construct an ideal
J with exactly two monomial initial ideals:

inw(J) = I, in−w(J) = I ′.

Here in−w(J) really means inN(1,...,1)−w(J) for N � 0; note that adding
a multiple of (1, . . . , 1) to w does not change the initial ideal of a
homogeneous ideal. The ideal J is chosen so that the other initial
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ideal I ′ is closer to the lexicographic ideal, in the sense that the list of
monomials in I ′ of degree d in lexicographic order is lexicographically
greater than the list of monomials in I of degree d.

Example 5. Let P (t) = 4 and n = 2. The ideals I = 〈x20, x0x1, x31〉
and I ′ = 〈x0, x41〉 ⊆ K[x0, x1, x2] are both Borel-fixed. The monomials
in I of degree 3, listed in descending lexicographic order, are

x30, x
2
0x1, x

2
0x2, x0x

2
1, x0x1x2, x

3
1,

while the monomials in I ′ are

x30, x
2
0x1, x

2
0x2, x0x

2
1, x0x1x2, x0x

2
2.

Note that the these differ only in the last position, where I ′ is larger.

Fix a saturated Borel-fixed ideal I. If I is the lexicographic ideal Ilex
then we are done. Otherwise let d be the smallest degree in which Id is
not a lex-segment. In [PS05] Peeva and Stillman construct a binomial
ideal J as follows. Let m ∈ Sd be the largest monomial in lexicographic
order in (Ilex)d\Id. Let f be the largest monomial in lexicographic order
in Id that is smaller than m. The fact that I is Borel-fixed implies that
f is a minimal generator of I. We construct the binomial f −m. The
first draft of the construction of J is to replace f in the generating set of
I by f −m. This doesn’t quite work as desired, as there may be other
generators of I that imply f ∈ I once we know that I is Borel-fixed
(in the sense that if x22 ∈ I, then x1x2 must be). The construction in
[PS05] also replaces these generators by modifications of the binomial
f −m.

The ideal J is been constructed so that in(1,N,N2,...,Nn)(J) = I for
N � 0, and there is only one other monomial initial ideal I ′, which is
closer to Ilex in the above order. The saturation I ′′ of gin(Nn,...,N,1)(I

′)
for N � 0 is Borel-fixed, and closer to Ilex than I. If I ′′ 6= Ilex then we
repeat. Since there are only a finite number of saturated Borel-fixed
ideals with Hilbert polynomial P , this procedure must terminate with
I ′′ = Ilex after a finite number of steps. Each step corresponds to a
map A1 → HilbP (Pn), so this shows that HilbP (Pn) is connected.

Example 6. Continuing Example 5, we can check that I = 〈x20, x0x1, x31〉
and I ′ = 〈x0, x41〉 are the only saturated Borel-fixed ideals with Hilbert
polynomial P (t) = 4. The ideal I ′ is the saturated lexicographic ideal
with that Hilbert polynomial. We construct

J = 〈x20, x0x1, x31 − x0x22〉.
The other monomial initial ideal of J is

〈x20, x0x1, x0x22, x41〉,
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which has saturation 〈x0, x41〉 = I ′. This shows that Hilb4(P2) is con-
nected.

2. Other Hilbert schemes

Let X be a projective scheme. The Hilbert functor for X is defined
as for Pn:

Hilb(X)(B) = { closed subschemes Z ⊆ X×B with Z → B flat and proper}.
We can show that this representable, by fixing an embedding X → PN .

This defines a Hilbert polynomial for subschemes of X, so we have the
functor

HilbP (X)(B) = { closed subschemes Z ⊆ X ×B ⊆ PNB flat over B,

where the fibres have Hilbert polynomial P}.

We get a natural transformation of functors HilbP (X)→ HilbP (PN ) by
forgetting X.

To see that HilbP (X) is representable, note that in our construction
of HilbP (PN) as a subscheme of a Grassmannian, adding the condition
that Z ⊆ X (so the ideal of X is contained in the ideal of Z) is a closed
condition.

This uses the following lemma.

Lemma 4. The locus Z ⊆ Gr(r, n) of r-dimensional subspaces of Kn

containing a fixed vector v ∈ Kn is closed.

Proof. Given an r-dimensional subspace V , pick a basis for V , and write
this as the rows of an r × n matrix. If v ∈ V , the (r + 1)× n matrix
with v added as the first row also has rank r, so all (r + 1)× (r + 1)
minors vanish. Expand these along the first row. They all have the form∑
±vijpIj , so Z is the intersection of Gr(k, n) in its Plücker embedding

with a subspace of P(n
k)−1. �

We apply this by fixing a degree D that is at least the Gotzmann
number of P and also at least the maximum degree of a minimal
generator of the ideal IX of X. Fix a basis f1, . . . , fr of (IX)D. We want
to guarantee that fi ∈ ID for 1 ≤ i ≤, so IX ⊆ I. The condition that
fi ∈ ID is a closed condition on Gr(

(
n+D
n

)
− P (D), SD) by the lemma.

Intersecting these loci describes HilbP (X) as a subscheme of HilbP (PN ).
Question: Does this depend on the choice of embedding of X into PN?
Answer: The decomposition of Hilb(X) into the disjoint union of
HilbP (X) might vary, but the Hilb(X) does not. This part of the magic
of representable functors! Once we show Hilb(X) is representable, it is
unique, so the choices made in its construction disappear. The same
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is true about the original construction of HilbP (PN); any choice of
sufficiently large degree D gives an isomorphic scheme.
Warning: As we discussed, HilbP (Pn) is always connected. However for
other varieties X we might have HilbP (X) disconnected.

Example 7. Let X = V (f) ⊆ P3 be a smooth cubic surface. The
Hilbert scheme Hilbt+1(X) is 27 points, as a subscheme of P3 with
Hilbert polynomial t+ 1 is a line, and X contains exactly 27 lines.

Example 8. Let X be a smooth conic in P3. Recall that X is a ruled
surface. Let P = t+1. Then Hilbt+1(X) has two connected components,
each corresponding to one of the rulings (so isomorphic to P1).
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