TCC - HILBERT SCHEMES AND MODULI SPACES -
LECTURE 3

DIANE MACLAGAN

Overview of construction. Last time we introduced the Hilbert
functor

Hilbp(P")(B) ={flat families overB of subschemes of P, with Hilbert
polynomial of fibres equal to P}.

We now show that Hilbp(P™) is representable. The key idea is to find
a degree D, depending only on P, for which

(1) Every saturated ideal I with Hilbert polynomial P is generated
in degree at most D, so I>p = (Ip), and

(2) If I is an ideal generated in degree D, and has h;(d) = P(d) for
d= D, D + 1, then I has Hilbert polynomial P.

By sending I to Ip, together these mean that we get a correspondence be-
tween saturated ideals I C K|z, ..., x,]/I with Hilbert polynomial P,
and a closed subscheme of the Grassmannian Gr(("*”) — P(D), ("*")),
cut out by equations that ensure that (Ip)p.; has the correct Hilbert

function.

0.1. Castelnuovo-Mumford regularity. The Castelnuovo-Mumford
reqularity of a subscheme Z C P is an invariant introduced by Mumford
in | | to make the construction of the Hilbert scheme more explicit.

Definition 1. Let Z be a subscheme of P.. The regularity of Z is
reg(Z) = min{j : H'(P",O4(l —14)) = 0 for all | > j,i > 0}.

Equivalently, we can associate to Z a homogeneous ideal I C S :=
K|z, ..., x,), saturated with respect to m = (g, ..., x,). In that case
the regularity of S/I is

min{j : H.(S/I); =0 for all | +i > j,i > 0},
where H (S/I) is the local cohomology module, which inherits a grading

from S/I. This can also be calculated as follows. We write S(—b) for
the polynomial ring with the grading shifted, so that

S(=b)g = Su_s.
1



2 DIANE MACLAGAN

In particular, 1 € S has degree b. Suppose
0 S/l Fy - F;,+0

is the minimal free resolution of S/I as an S-module, where F; =
@jS(—ﬂzj), then
reg(S/1) = max(8;; — ).
1/7]

We will use two key facts about regularity:

(1) Fy = @;5(—p,;) surjects onto the generators of I, so By, are the
degrees of generators. Thus reg(S/I) + 1 is an upper bound on
the degrees of generators of I.

A proof of the corresponding fact in the geometric context (if
the regularity of Z is k, then Z(k) is generated by global sec-
tions) is at the start of Chapter 14 of | ], where Mumford
attributes it to Castelnuovo.

(2) If I is a saturated ideal, then the Hilbert function agrees with
the Hilbert polynomial from the regularity:

hi(d) = pr(d) for d > reg(S/I).

We can give a uniform bound on the regularity of all subschemes Z
with Hilbert polynomial P. Such a bound was first shown to exist in
Mumford | , Chapter 14], simplifying Grothendieck’s construction
of the Hilbert scheme. We will follow the treatment of Gotzmann| l,
which uses Macaulay’s characterisation of possible Hilbert polynomials.
Sample question: Is there a subscheme of P" for some n with Hilbert
polynomial P(t) = ¢*?

Theorem 1 (Macaulay). The Hilbert polynomial of a homogeneous

ideal I C K|xg,...,x,| can be written as
D :
t+a; —1+1
) mo =3 (")
j=1 ’

where a; > a9 > -+ > ap > 0.
In addition, if J is a homogeneous ideal in K|xy, ..., x,| with h;(d) =
pr(t), then hy(d+1) < p;(d+1).

This means that the answer to the sample question is no! The
summand (H“g”l) is a polynomial in ¢ of degree a;, so if there is
such a description for t?, we must have a; = 2, and the first term is
("5?) = 1/2(t + 2)(¢t + 1). Subtracting this from #?, we are left with
another polynomial of degree 2, so we also have a; = 2. However

("22) + ("11) = (t + 1)% so subtracting this from ¢* we get —2¢ — 1.
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Since the leading coefficient of (Haia_,”l) is always positive, there is no
way to write —2¢t — 1 as a sum of such polynomials, so we conclude that
t? does not have such a description, and so p(t) = t? is never a Hilbert
polynomial. This means that the Hilbert scheme Hilbs:(P") is empty
for all n.
Question: Where does this formula come from?

Macaulay actually shows the existence of the lexicographic ideal with a
given Hilbert function, and shows that the Hilbert function of this ideal
grows as fast as possible. The lexicographic term order on monomials
in K[zo,...,z,] has x"* = [[_,z;" < xV if the first nonzero entry of
v — u is positive. In particular, we have ¢y = z; > --- > x,. The
lexicographic ideal with Hilbert function A is the ideal I for which I is
the span of the largest (”:d) — h(d) monomials in lexicographic order.
Macaulay’s theorem is that this ideal exists for any function h that is
the Hilbert function of some ideal. The content here is that

Silq C 1ip.
For d > 0, we have [;.1 = S114.
Example 1. Let P(t) =3t + 1, and n = 3. Set

mo - {03 05

P(t) t>4
Then
_ /.4 .3 3 3 2.2 .2 2 2.2 2 2 2
3 2 2 2 2 3 2
ToZy, LoL X2, LoL X3, LoL1Lg, LoL1L2X3, LoL1L3, LoLg, LoLoL3,

2 3.4 .3
TOToT5, Loy, T, T7T2)

Fix D > 0, so that Si(ljez)p = (Ljex)pt1, and let m = x" be the
smallest monomial in (I;.,)p with respect to the lexicographic order.
For d > D, the smallest monomial in ([j.;)q is mz?~P. The Hilbert
function h(d) = dimg(S/iez)qa equals the number of monomials of
degree d not in [j.,.

Example 2. Continuing Example 1, in degree 4, x3z5 is the smallest
element of [, of degree 4. This is x" for u = (0,3,1,0). Monomials
not in I, of degree 4 are exactly the monomials of degree 4 less than
1375 in the lexicographic term order. These are:

[ ] .Iz{’l’g,

e 72 times any monomial of degree 2 in xs, 73,
e 1; times any monomial of degree 3 in x,, z3, and
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e any monomial of degree 4 in x,, x3.

There are
241 3+1 441
1+( | )+( | )+( | ):1+3+4+5:13:h(4)
such monomials, as expected. In general x?x2x§_4 is the smallest

monomial in [, of degree d for d > 4, and we replace z3x3 by x‘;’xg_?’,

“of degree 2”7 by “of degree d — 2” in the second case, and similarly 3 by
d — 3, and 4 by d — 4. This gives a decomposition

N NG
:(difl>+<d—i+1)+(d—?+1>+(d—g+0)

=3d+1

which is of the form of Theorem 1 with a; = ay = a3 =1, and ay = 0.
A proof of Macaulay’s theorem can be found in | , Chapter 4].

Theorem 2. Let I C Klxo,...,x,] be a homogeneous ideal saturated
with respect to (xg, ..., x,) (so (I :{xg,...,x,)®) =1). Write

D .
t+a;, —1+1
— )
i=1 @i
where a; > ag > -+ > ap > 0. Then reg(S/I) < D — 1. Thus in
particular I is generated in degree at most D.

The number D in Theorem 2 is called the Gotzmann number of the
polynomial p;.

Theorem 2 gives a computable, uniform upper bound on the regularity
of all saturated ideals with a given Hilbert polynomial, and thus on the
degrees of their generators.

Write Isq = (f € I : deg(f) > d). Since (Isq: (xg,...,2,)®) = (I :
(g, ..., xn)™®) and Isq = (Iy) if d is at least the maximum degree of a
generator of I, if I is a saturated ideal with Hilbert polynomial P, the
ideal sheaf Z = I is determined by Iget, where Got is the Gotzmann
number of P. We henceforth write D for the Gotzmann number.

Regularity is upper semicontinuous in flat families, since the rank
of cohomology is. This means that if Z — B is a flat family, where
Z C P, then the locus of b € B for which the regularity of a fibre
is at least [ is closed in B. Passing from an ideal to its initial ideal,
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in the sense of Grobner bases, is a flat degeneration, so the largest
regularity is achieved at a monomial ideal. See [ , Chapter 15] for
details on Grébner degenerations. This means that to prove Theorem 2
we only need to show that D — 1 bounds the regularity of S/I when
I is a monomial ideal. There are only a finite number of saturated
monomial ideals with a given Hilbert polynomial, and it turns out that
the lexicographic ideal has the largest regularity. These ideas can be
turned into a proof of Theorem 2. For other proofs, see [ | or
[ , Chapter 4].

Gotzmann’s regularity theorem implies that every subscheme of P,
with Hilbert polynomial P defines a point in Gr(("t”) — h(D), ("t7)),
by associating to a subscheme Z the saturated ideal I C K|xy, ..., z,],
and considering the subspace Ip C Klzo, ..., x,]p.

We now consider equations for this locus. This uses a second theorem
of Gotzmann | ].

Theorem 3. Let p be a Hilbert polynomial. If I is a homogeneous ideal
with hi(d) = p(d), and hy(d+ 1) = p(d + 1) then h;(m) = p(m) for
m > d, so I has Hilbert polynomaial p.

Thus in particular if I is the ideal generated by a subspace of Sp of
dimension ("ZD) — h(D), and h;(D + 1) = p(D + 1) then p; = p. This
implies that the saturation of I also has Hilbert polynomial p, and that
the saturation of I is generated in degrees at most D. From this we see
that IZD = (I . <I‘0, R ,$n>OO)ZD.

Thus there is a bijection between

{ homogeneous saturated ideals in K|z, ..., x,] with Hilbert polynomial p}

and

D
{ points p € Gr( (n * > — h(D), Sp) for which the ideal (p) has
n

Hilbert function hyy(D 4+ 1) = p(D + 1)}.

This extends in a natural manner to the version where K is replaced
by a ring R, using the connection between locally freeness and flatness.
One version of this, when B is a connected and reduced, says that a
family of subschemes of P} is flat over the base B if and only if all
fibres have the same Hilbert polynomial.

Let I be generated in degree D. As Ipyy = K{S1Ip}, hy(D +1)
p(D+1) if and only if dimx K{S1Ip} = ("+5+1) —p(D+1). Macaulay’s
theorem implies that h;(D + 1) < pr(D + 1), so dimgx K{S1Ip} =
dimg Ipi1 > ("PPT) —p(D+1). So to guarantee that hy(D+1) = p(D+
1), we only need to check that dimg K{S;Ip} < ("JFSH) —p(D +1).
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This is a determinantal condition: we form the matrix whose row space
is a basis for K{S1Ip}, and set all its minors of size ("*2*!) —p(D+1)+1
equal to zero.

Example 3. Let n = 1, and p(¢t) = 2. The Gotzmann number for
p is 2, but we will used D = 3 to better illustrate this phenomenon.
Set S = Klzg,x1]. Since dimg S3 = 4, we are looking for a locus in
the Grassmannian Gr(2,4). In order to have fewer variables in this
example, we will also work with the affine chart of the Grassmannian
with pys .24, # 0. To complete the example, we could either work with
each affine chart in turn, or work with the homogeneous coordinates on
the Grassmannian.

An ideal corresponding to a point in this affine chart has the form
(3 +axox? +ba3, x2x) +crori+da), where a, b, ¢, d are the coordinates
on the affine chart A* of Gr(2,4). The degree 4 part of this ideal is the
row space of the following matrix:

4 3 2.2 3
Ty THT1  THT]  TOTY

N

1 0 a b 0
0 1 0 a b
0 1 c d 0
0 0 1 c d

Since dimg Sy = 5, and p(5) = 2, we want this matrix to have rank at
most 3, so need all the 4 X 4 minors to vanish. This the requirement
that

a+c?—d = b+cd = —ad+be+d? = —acd+bc®—bd = a*d—abe—ad?+b*+bed = 0.

Minimal generators of the ideal generated by these equations are b + cd
and a+c?—d, so the locus in A* C Gr(2,4) with this Hilbert polynomial
is a copy of AZ.
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