TCC - HILBERT SCHEMES AND MODULI SPACES LECTURE 3

DIANE MACLAGAN

Overview of construction. Last time we introduced the Hilbert functor
$\operatorname{Hilb}_{P}\left(\mathbb{P}^{n}\right)(B)=\left\{\right.$ flat families over B of subschemes of \mathbb{P}_{B}^{n} with Hilbert polynomial of fibres equal to $P\}$.

We now show that $\operatorname{Hilb}_{P}\left(\mathbb{P}^{n}\right)$ is representable. The key idea is to find a degree D, depending only on P, for which
(1) Every saturated ideal I with Hilbert polynomial P is generated in degree at most D, so $I_{\geq D}=\left\langle I_{D}\right\rangle$, and
(2) If I is an ideal generated in degree D, and has $h_{I}(d)=P(d)$ for $d=D, D+1$, then I has Hilbert polynomial P.
By sending I to I_{D}, together these mean that we get a correspondence between saturated ideals $I \subseteq K\left[x_{0}, \ldots, x_{n}\right] / I$ with Hilbert polynomial P, and a closed subscheme of the Grassmannian $\left.\operatorname{Gr}\binom{n+D}{n}-P(D),\binom{n+D}{n}\right)$, cut out by equations that ensure that $\left\langle I_{D}\right\rangle_{D+1}$ has the correct Hilbert function.
0.1. Castelnuovo-Mumford regularity. The Castelnuovo-Mumford regularity of a subscheme $Z \subseteq \mathbb{P}^{n}$ is an invariant introduced by Mumford in [Mum66] to make the construction of the Hilbert scheme more explicit.

Definition 1. Let Z be a subscheme of \mathbb{P}_{K}^{n}. The regularity of Z is

$$
\operatorname{reg}(Z)=\min \left\{j: H^{i}\left(\mathbb{P}^{n}, \mathcal{O}_{Z}(l-i)\right)=0 \text { for all } l \geq j, i>0\right\}
$$

Equivalently, we can associate to Z a homogeneous ideal $I \subseteq S:=$ $K\left[x_{0}, \ldots, x_{n}\right]$, saturated with respect to $\mathfrak{m}=\left\langle x_{0}, \ldots, x_{n}\right\rangle$. In that case the regularity of S / I is

$$
\min \left\{j: H_{\mathfrak{m}}^{i}(S / I)_{l}=0 \text { for all } l+i>j, i \geq 0\right\}
$$

where $H_{\mathfrak{m}}^{i}(S / I)$ is the local cohomology module, which inherits a grading from S / I. This can also be calculated as follows. We write $S(-b)$ for the polynomial ring with the grading shifted, so that

$$
S(-b)_{d}=S_{d-b}
$$

In particular, $1 \in S$ has degree b. Suppose

$$
0 \leftarrow S / I \leftarrow F_{0} \leftarrow \cdots \leftarrow F_{s} \leftarrow 0
$$

is the minimal free resolution of S / I as an S-module, where $F_{i}=$ $\oplus_{j} S\left(-\beta_{i j}\right)$, then

$$
\operatorname{reg}(S / I)=\max _{i, j}\left(\beta_{i j}-i\right)
$$

We will use two key facts about regularity:
(1) $F_{1}=\oplus_{j} S\left(-\beta_{i j}\right)$ surjects onto the generators of I, so $\beta_{1 j}$ are the degrees of generators. Thus $\operatorname{reg}(S / I)+1$ is an upper bound on the degrees of generators of I.

A proof of the corresponding fact in the geometric context (if the regularity of Z is k, then $\mathcal{I}(k)$ is generated by global sections) is at the start of Chapter 14 of [Mum66], where Mumford attributes it to Castelnuovo.
(2) If I is a saturated ideal, then the Hilbert function agrees with the Hilbert polynomial from the regularity:

$$
h_{I}(d)=p_{I}(d) \text { for } d \geq \operatorname{reg}(S / I)
$$

We can give a uniform bound on the regularity of all subschemes Z with Hilbert polynomial P. Such a bound was first shown to exist in Mumford [Mum66, Chapter 14], simplifying Grothendieck's construction of the Hilbert scheme. We will follow the treatment of Gotzmann[Got78], which uses Macaulay's characterisation of possible Hilbert polynomials. Sample question: Is there a subscheme of \mathbb{P}^{n} for some n with Hilbert polynomial $P(t)=t^{2}$?

Theorem 1 (Macaulay). The Hilbert polynomial of a homogeneous ideal $I \subseteq K\left[x_{0}, \ldots, x_{n}\right]$ can be written as

$$
\begin{equation*}
p_{I}(t)=\sum_{j=1}^{D}\binom{t+a_{i}-i+1}{a_{i}}, \tag{1}
\end{equation*}
$$

where $a_{1} \geq a_{2} \geq \cdots \geq a_{D} \geq 0$.
In addition, if J is a homogeneous ideal in $K\left[x_{0}, \ldots, x_{n}\right]$ with $h_{J}(d)=$ $p_{I}(t)$, then $h_{J}(d+1) \leq p_{I}(d+1)$.

This means that the answer to the sample question is no! The summand $\binom{t+a_{i}-i+1}{a_{i}}$ is a polynomial in t of degree a_{i}, so if there is such a description for t^{2}, we must have $a_{1}=2$, and the first term is $\binom{t+2}{2}=1 / 2(t+2)(t+1)$. Subtracting this from t^{2}, we are left with another polynomial of degree 2 , so we also have $a_{2}=2$. However $\binom{t+2}{2}+\binom{t+1}{2}=(t+1)^{2}$, so subtracting this from t^{2} we get $-2 t-1$.

Since the leading coefficient of $\binom{t+a_{i}-i+1}{a_{i}}$ is always positive, there is no way to write $-2 t-1$ as a sum of such polynomials, so we conclude that t^{2} does not have such a description, and so $p(t)=t^{2}$ is never a Hilbert polynomial. This means that the Hilbert scheme $\operatorname{Hilb}_{t^{2}}\left(\mathbb{P}^{n}\right)$ is empty for all n.
Question: Where does this formula come from?
Macaulay actually shows the existence of the lexicographic ideal with a given Hilbert function, and shows that the Hilbert function of this ideal grows as fast as possible. The lexicographic term order on monomials in $K\left[x_{0}, \ldots, x_{n}\right]$ has $\mathbf{x}^{\mathbf{u}}=\prod_{i=0}^{n} x_{i}^{u_{i}} \prec \mathbf{x}^{\mathbf{v}}$ if the first nonzero entry of $\mathbf{v}-\mathbf{u}$ is positive. In particular, we have $x_{0} \succ x_{1} \succ \cdots \succ x_{n}$. The lexicographic ideal with Hilbert function h is the ideal I for which I_{d} is the span of the largest $\binom{n+d}{n}-h(d)$ monomials in lexicographic order. Macaulay's theorem is that this ideal exists for any function h that is the Hilbert function of some ideal. The content here is that

$$
S_{1} I_{d} \subseteq I_{d+1} .
$$

For $d \gg 0$, we have $I_{d+1}=S_{1} I_{d}$.
Example 1. Let $P(t)=3 t+1$, and $n=3$. Set

$$
H(t)=\left\{\begin{array}{cc}
\binom{t+3}{3} & t<4 \\
P(t) & t \geq 4
\end{array} .\right.
$$

Then

$$
\begin{aligned}
I_{l e x}= & \left\langle x_{0}^{4}, x_{0}^{3} x_{1}, x_{0}^{3} x_{2}, x_{0}^{3} x_{3}, x_{0}^{2} x_{1}^{2}, x_{0}^{2} x_{1} x_{2}, x_{0}^{2} x_{1} x_{3}, x_{0}^{2} x_{2}^{2}, x_{0}^{2} x_{2} x_{3}, x_{0}^{2} x_{3}^{2},\right. \\
& x_{0} x_{1}^{3}, x_{0} x_{1}^{2} x_{2}, x_{0} x_{1}^{2} x_{3}, x_{0} x_{1} x_{2}^{2}, x_{0} x_{1} x_{2} x_{3}, x_{0} x_{1} x_{3}^{2}, x_{0} x_{2}^{3}, x_{0} x_{2}^{2} x_{3}, \\
& \left.x_{0} x_{2} x_{3}^{2}, x_{0} x_{3}^{3}, x_{1}^{4}, x_{1}^{3} x_{2}\right\rangle
\end{aligned}
$$

Fix $D \gg 0$, so that $S_{1}\left(I_{l e x}\right)_{D}=\left(I_{l e x}\right)_{D+1}$, and let $m=\mathbf{x}^{\mathbf{u}}$ be the smallest monomial in $\left(I_{l e x}\right)_{D}$ with respect to the lexicographic order. For $d>D$, the smallest monomial in $\left(I_{l e x}\right)_{d}$ is $m x_{n}^{d-D}$. The Hilbert function $h(d)=\operatorname{dim}_{K}\left(S / I_{l e x}\right)_{d}$ equals the number of monomials of degree d not in $I_{l e x}$.
Example 2. Continuing Example 1, in degree 4, $x_{1}^{3} x_{2}$ is the smallest element of $I_{l e x}$ of degree 4. This is $\mathbf{x}^{\mathbf{u}}$ for $\mathbf{u}=(0,3,1,0)$. Monomials not in $I_{\text {lex }}$ of degree 4 are exactly the monomials of degree 4 less than $x_{1}^{3} x_{2}$ in the lexicographic term order. These are:

- $x_{1}^{3} x_{3}$,
- x_{1}^{2} times any monomial of degree 2 in x_{2}, x_{3},
- x_{1} times any monomial of degree 3 in x_{2}, x_{3}, and
- any monomial of degree 4 in x_{2}, x_{3}.

There are

$$
1+\binom{2+1}{1}+\binom{3+1}{1}+\binom{4+1}{1}=1+3+4+5=13=h(4)
$$

such monomials, as expected. In general $x_{1}^{3} x_{2} x_{3}^{d-4}$ is the smallest monomial in $I_{\text {lex }}$ of degree d for $d \geq 4$, and we replace $x_{1}^{3} x_{3}$ by $x_{1}^{3} x_{3}^{d-3}$, "of degree 2 " by "of degree $d-2$ " in the second case, and similarly 3 by $d-3$, and 4 by $d-4$. This gives a decomposition

$$
\begin{aligned}
h(d) & =1+\binom{d-2+1}{1}+\binom{d-1+1}{1}+\binom{d+1}{1} \\
& =\binom{d+1}{1}+\binom{d-1+1}{1}+\binom{d-2+1}{1}+\binom{d-3+0}{0} \\
& =3 d+1
\end{aligned}
$$

which is of the form of Theorem 1 with $a_{1}=a_{2}=a_{3}=1$, and $a_{4}=0$.
A proof of Macaulay's theorem can be found in [BH93, Chapter 4].
Theorem 2. Let $I \subseteq K\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous ideal saturated with respect to $\left\langle x_{0}, \ldots, x_{n}\right\rangle$ (so $\left(I:\left\langle x_{0}, \ldots, x_{n}\right\rangle^{\infty}\right)=I$). Write

$$
p_{I}=\sum_{i=1}^{D}\binom{t+a_{i}-i+1}{a_{i}}
$$

where $a_{1} \geq a_{2} \geq \cdots \geq a_{D} \geq 0$. Then $\operatorname{reg}(S / I) \leq D-1$. Thus in particular I is generated in degree at most D.

The number D in Theorem 2 is called the Gotzmann number of the polynomial p_{I}.

Theorem 2 gives a computable, uniform upper bound on the regularity of all saturated ideals with a given Hilbert polynomial, and thus on the degrees of their generators.

Write $I_{\geq d}=\langle f \in I: \operatorname{deg}(f) \geq d\rangle$. Since $\left(I_{\geq d}:\left\langle x_{0}, \ldots, x_{n}\right\rangle^{\infty}\right)=(I:$ $\left\langle x_{0}, \ldots, x_{n}\right\rangle^{\infty}$) and $I_{\geq d}=\left\langle I_{d}\right\rangle$ if d is at least the maximum degree of a generator of I, if I is a saturated ideal with Hilbert polynomial P, the ideal sheaf $\mathcal{I}=\tilde{I}$ is determined by $I_{\text {Got }}$, where Got is the Gotzmann number of P. We henceforth write D for the Gotzmann number.

Regularity is upper semicontinuous in flat families, since the rank of cohomology is. This means that if $Z \rightarrow B$ is a flat family, where $Z \subseteq \mathbb{P}_{B}^{n}$, then the locus of $b \in B$ for which the regularity of a fibre is at least l is closed in B. Passing from an ideal to its initial ideal,
in the sense of Gröbner bases, is a flat degeneration, so the largest regularity is achieved at a monomial ideal. See [Eis95, Chapter 15] for details on Gröbner degenerations. This means that to prove Theorem 2 we only need to show that $D-1$ bounds the regularity of S / I when I is a monomial ideal. There are only a finite number of saturated monomial ideals with a given Hilbert polynomial, and it turns out that the lexicographic ideal has the largest regularity. These ideas can be turned into a proof of Theorem 2. For other proofs, see [Got78] or [BH93, Chapter 4].

Gotzmann's regularity theorem implies that every subscheme of \mathbb{P}_{K}^{n} with Hilbert polynomial P defines a point in $\operatorname{Gr}\left(\binom{n+D}{n}-h(D),\binom{n+D}{n}\right)$, by associating to a subscheme Z the saturated ideal $I \subseteq K\left[x_{0}, \ldots, x_{n}\right]$, and considering the subspace $I_{D} \subseteq K\left[x_{0}, \ldots, x_{n}\right]_{D}$.

We now consider equations for this locus. This uses a second theorem of Gotzmann [Got78].

Theorem 3. Let p be a Hilbert polynomial. If I is a homogeneous ideal with $h_{I}(d)=p(d)$, and $h_{I}(d+1)=p(d+1)$ then $h_{I}(m)=p(m)$ for $m \geq d$, so I has Hilbert polynomial p.

Thus in particular if I is the ideal generated by a subspace of S_{D} of dimension $\binom{n+D}{n}-h(D)$, and $h_{I}(D+1)=p(D+1)$ then $p_{I}=p$. This implies that the saturation of I also has Hilbert polynomial p, and that the saturation of I is generated in degrees at most D. From this we see that $I_{\geq D}=\left(I:\left\langle x_{0}, \ldots, x_{n}\right\rangle^{\infty}\right)_{\geq D}$.

Thus there is a bijection between
$\left\{\right.$ homogeneous saturated ideals in $K\left[x_{0}, \ldots, x_{n}\right]$ with Hilbert polynomial $\left.p\right\}$ and
$\left\{\right.$ points $p \in \operatorname{Gr}\left(\binom{n+D}{n}-h(D), S_{D}\right)$ for which the ideal $\langle p\rangle$ has
Hilbert function $\left.h_{\langle p\rangle}(D+1)=p(D+1)\right\}$.
This extends in a natural manner to the version where K is replaced by a ring R, using the connection between locally freeness and flatness. One version of this, when B is a connected and reduced, says that a family of subschemes of \mathbb{P}_{B}^{n} is flat over the base B if and only if all fibres have the same Hilbert polynomial.

Let I be generated in degree D. As $I_{D+1}=K\left\{S_{1} I_{D}\right\}, h_{I}(D+1)=$ $p(D+1)$ if and only if $\operatorname{dim}_{K} K\left\{S_{1} I_{D}\right\}=\binom{n+D+1}{n}-p(D+1)$. Macaulay's theorem implies that $h_{I}(D+1) \leq p_{I}(D+1)$, so $\operatorname{dim}_{K} K\left\{S_{1} I_{D}\right\}=$ $\operatorname{dim}_{K} I_{D+1} \geq\binom{ n+D+1}{n}-p(D+1)$. So to guarantee that $h_{I}(D+1)=p(D+$ 1), we only need to check that $\operatorname{dim}_{K} K\left\{S_{1} I_{D}\right\} \leq\binom{ n+D+1}{n}-p(D+1)$.

This is a determinantal condition: we form the matrix whose row space is a basis for $K\left\{S_{1} I_{D}\right\}$, and set all its minors of size $\binom{n+D+1}{n}-p(D+1)+1$ equal to zero.

Example 3. Let $n=1$, and $p(t)=2$. The Gotzmann number for p is 2 , but we will used $D=3$ to better illustrate this phenomenon. Set $S=K\left[x_{0}, x_{1}\right]$. Since $\operatorname{dim}_{K} S_{3}=4$, we are looking for a locus in the Grassmannian $\operatorname{Gr}(2,4)$. In order to have fewer variables in this example, we will also work with the affine chart of the Grassmannian with $p_{x_{0}^{3}, x_{0}^{2} x_{1}} \neq 0$. To complete the example, we could either work with each affine chart in turn, or work with the homogeneous coordinates on the Grassmannian.

An ideal corresponding to a point in this affine chart has the form $\left\langle x_{0}^{3}+a x_{0} x_{1}^{2}+b x_{1}^{3}, x_{0}^{2} x_{1}+c x_{0} x_{1}^{2}+d x_{1}^{3}\right\rangle$, where a, b, c, d are the coordinates on the affine chart \mathbb{A}^{4} of $\operatorname{Gr}(2,4)$. The degree 4 part of this ideal is the row space of the following matrix:

$$
\left.\begin{array}{ccccc}
x_{0}^{4} & x_{0}^{3} x_{1} & x_{0}^{2} x_{1}^{2} & x_{0} x_{1}^{3} & x_{1}^{4} \\
1 & 0 & a & b & 0 \\
0 & 1 & 0 & a & b \\
0 & 1 & c & d & 0 \\
0 & 0 & 1 & c & d
\end{array}\right]
$$

Since $\operatorname{dim}_{K} S_{4}=5$, and $p(5)=2$, we want this matrix to have rank at most 3 , so need all the 4×4 minors to vanish. This the requirement that

$$
a+c^{2}-d=b+c d=-a d+b c+d^{2}=-a c d+b c^{2}-b d=a^{2} d-a b c-a d^{2}+b^{2}+b c d=0
$$

Minimal generators of the ideal generated by these equations are $b+c d$ and $a+c^{2}-d$, so the locus in $\mathbb{A}^{4} \subseteq \operatorname{Gr}(2,4)$ with this Hilbert polynomial is a copy of \mathbb{A}^{2}.

References

[BH93] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993.
[Eis95] David Eisenbud, Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.
[Got78] Gerd Gotzmann, Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes, Math. Z. 158 (1978), no. 1, 61-70 (German).
[Mum66] David Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. With a section by G. M. Bergman.

