
TCC - HILBERT SCHEMES AND MODULI SPACES -
LECTURE 2

DIANE MACLAGAN

Recall: A moduli functor F : Schemes → Sets sends a scheme B
to the set of families over the base B of objects being parameterised,
moduli some form of equivalence relation.

A scheme X is a fine moduli space for this moduli problem if F ∼=
hX = Mor(−, X) (the functor of points of X). The scheme X is unique,
if it exists, by Yoneda’s lemma.

Example 1. For the Grassmannian we have the moduli functor Schemes→
Sets given by

B 7→ {subsheaves F ⊆ OnB that are locally summands free of rank r}.

Restricted to affine schemes, so B = Spec(R), this becomes

R 7→ { submodules M ⊆ Rn that are locally free direct summands of rank r}.

The property that a scheme X is a fine moduli space for a moduli
functor F is equivalent to the existence of a universal family π : U → X
with the property that whenever ψ : Y → B is a family of the required
form (so an element of F (B)), there is a unique morphism φ : B → X
such that

Y = U ×X B //

ψ
��

U

π
��

B
φ

// X

If we know that X represents F (so F ∼= Mor(−, X), we can take
π : U → X to be the element of F (X) corresponding to id : X → X ∈
Hom(X,X). Given a universal family π : U → X, for each B we get a
function αB : F (B)→ Mor(B,X), which defines a natural isomorphism.

Example 2. The universal family of P2 is

U = {([x0 : x1 : x2], (y0, y1, y2) : rk ( x0 x1 x2y0 y1 y2 ) = 1} ⊆ P2 × A3.

The map π : U → P2 is projection onto the first factor, and the fibre
over a point [x] ∈ P2 is the line through the origin spanned by x in A3
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In today’s lecture, we introduce the star of the module: the Hilbert
scheme. This parameterises subschemes of Pn.

Our first attempt at the moduli functor is:

HilbPn : Schemes→ Sets

given by
(1)

HilbPn(B) = {Z a subscheme of PnB = Pn ×B that are flat over B}.
Here “flat” is the appropriate niceness property for a family in alge-

braic geometry, which guarantees that the fibres of of the morphism
Z → B are not too different from each other.

In commutative algebra, an R-module M is flat if −⊗M is an exact
functor. If

0→ A→ B → C → 0

is an exact sequence of R-modules, we always have

A⊗M → B ⊗M → C ⊗M → 0

exact. The new criterion is that A ⊗M → B ⊗M is injective. For
example, if M = Rn is free, then M is flat, while Z/2Z is not a flat
Z-module; this can be seen by considering the exact sequence

0→ Z ×2→ Z→ Z/2Z→ 0.

If A,B are commutative rings, with φ∗ : A→ B making B into an
A-module, then φ : Spec(B)→ Spec(A) is flat if B is a flat A-module.
In general, φ : X → Y is flat if the stalk OX,x of X at a point x is flat
as an OY,y-module, where y = φ(x).

One useful fact about flat families: if A is a PID, then Spec(B)→
Spec(A) is flat if and only if B is a torsion-free A-module ([Eis95,
Corollary 6.3]). This is useful when A = K[t] with K a field. We’ll see
some other useful characterizations later.

It turns out that the functor in (1) is too “big” a question, in the sense
that the resulting moduli space would have infinitely many components.
We remove this problem by specifying the Hilbert polynomial of the
subscheme Z. We’ll work for now for simplicity over a base field K (so
the functor should be restricted to K-schemes) but everything works
over Z.

We use the following commutative algebra notation. We write S for
the polynomial ring K[x0, . . . , xn]. This is graded by deg(xi) = 1 for
0 ≤ i ≤ n, so S = ⊕∞d=0Sd, where Sd is the vector space of homogeneous
polynomials of degree d. An ideal I ⊆ S is homogeneous if it is generated
by homogeneous elements of S. In that case, S/I ∼= ⊕∞d=0(S/I)d ∼=
⊕∞d=0Sd/Id is graded.
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The key fact that we will use repeatedly is that a subscheme Z of
PnK is determined by a homogeneous ideal I ⊆ S:

OZ = OPn/IZ
where IZ is the ideal sheaf of Z, and IZ is the sheafification Ĩ of
I. To see this on affine charts, let Ii = (IS[x−1i ])0 ⊆ S[x−1i ]0 =
K[x0/xi, . . . , xn/xi]. Then the intersection of Z with the affine chart
D(xi), where the ith coordinate is nonzero is Spec(K[x0/xi, . . . , xn/xi]/Ii).

This correspondence between subschemes of Pn and homogeneous
ideals in S = K[x0, . . . , xn] is not one-to-one, as two different ideals can
have the same sheafification.

Ideals I, J ⊆ S correspond to the same subscheme if their saturations
agree:

(I : 〈x0, . . . , xn〉∞) = (J : 〈x0, . . . , xn〉∞).

Here (I : 〈x0, . . . , xn〉∞) = {f ∈ S : ∃k > 0 such thatfm ∈ I for all m ∈
〈x0, . . . , xn〉k}. For example, in K[x0, x1], the two ideals 〈x1〉 and
〈x21, x0x1〉 = 〈x1〉 ∩ 〈x0, x21〉 both have saturation 〈x1〉. The associated
subscheme of P1 is the point [1 : 0] with the reduced structure. In
general, two ideals I, J ⊆ S have the same saturation if and only if
Id = Jd for all d� 0.

Definition 1. The Hilbert function of a homogeneous ideal I ⊆
K[x0, . . . , xn] is the function hI : N→ N given by hI(d) = dimK(S/I)d
for all d.

Example 3. (1) If I = 〈0〉, hI(d) = dimK Sd =
(
n+d
d

)
=
(
n+d
n

)
.

This equals 1/n!(d+ n) . . . (d+ 1), so is a polynomial of degree
n in d.

(2) If I = 〈f〉, where f is homogeneous of degree m, then

hI(d) =

{
dimK Sd d < m

dimK Sd − dimK Sd−m d ≥ m

=

{(
n+d
n

)
d < m(

n+d
n

)
−
(
n+d−m

n

)
Note that hI(d) is a polynomial in d of degree n− 1 for d� 0.

For any homogeneous ideal hI(d) agrees pI(d) for d� 0, where pI ∈
Q[t] is a polynomial. This polynomial is called the Hilbert polynomial
of I.

When Z is a subscheme of Pn with associated ideal I, we have
dim(Z) = deg(pI). The degree of Z is dim(Z)! times the leading
coefficient of pI .
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Geometrically, if Z is defined over a field K, we have

pI(d) = χ(OZ(d)) =
dimZ∑
i=0

(−1)i dimK H
i(Pn,OZ(d)),

which equals dimK H
0(Pn,OZ(d)) for d� 0 by Serre vanishing.

Example 4. (1) When Z is a hypersurface of degree m in Pn, pI =(
n+t
n

)
−
(
n+t−m

n

)
.

(2) When Z is a line in Pn, pI(t) = t+ 1.
(3) When Z is a smooth curve of degree d and genus g, pI(t) =

dt+1−g. If Z is embedded by a complete linear series L(D), then
this follows from the Riemann-Roch theorem. The Riemann-
Roch theorem states that

l(D)− l(K − d) = deg(D) + 1− g.
Apply this to tD, using that h(t) = l(tD). We have l(K− tD) =
0 for t� 0, so p(tD) = deg(tD) + 1− g = t deg(D) + 1− g.

Our new Hilbert functor is:

HilbP,Pn : Schemes→ Sets

given by

HilbP,Pn(B) = { subschemes Z ⊆ PnB such that Z → B is a flat family,

with every fibre having Hilbert polynomial P}.

We will show that this representable, so there is a (projective) scheme
HilbP (Pn) with

HilbP,Pn ∼= Mor(−,HilbP (Pn)).

The original Hilbert functor is then represented by the disjoint union
of all HilbP as P varies over all (countably infinite) Hilbert polynomials.

Example 5. (1) When P (t) = r is constant, HilbP is the Hilbert
scheme of points in Pn. This has an irreducible component
with an open set consisting of subschemes of Pn consisting of
r distinct reduced points. However, as we will see later it can
have many more components.

(2) When P (t) = t + 1, then Z is a line in Pn, and HilbP =
Gr(2, n+ 1).

(3) When P (t) = 2t + 1, HilbP (P2) parameterises all conics in P2.
When we work over a field K, these can be described by an
equation

(2) ax20 + bx0x1 + cx0x1 + dx21 + ex1x2 + fx22,
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so we associate the point [a : b : c : d : e : f ] ∈ P5 to the conic.
Thus Hilb2t+1(P2) ∼= P5. The equation (2) defines the universal
family of Hilb2t+1(P5) as a subscheme of P2 × P5.

In general, when P =
(
n+t
n

)
−
(
n+t−r
n

)
the Hilbert scheme

HilbP (Pn) parameterises hypersurfaces of degree r in Pn, so

HilbP (Pn) ∼= P(n+r
r )−1.

There is an implicit exercise here: if a subscheme Z has this
Hilbert polynomial, it must be a hypersurface of this degree.

(4) When P (t) =
(
t+r
r

)
, then (again, an exercise!) if a subscheme Z

of Pn has Hilbert polynomial P , then it is a linear subspace of
dimension r, so HilbP (Pn) = Gr(r + 1, n+ 1).

The situation of the last two examples, where every subscheme Z
with the given Hilbert polynomial has a particular form, does not
generalise well. We will revisit this with the Hilbert scheme of points
later. Another example is given by the “twisted cubic” (the image of
the Veronese embedding of P1 into P3. This has Hilbert polynomial
3t + 1. However Hilb3t+1(P3) has two irreducible components [PS85].
One component generically parameterises twisted cubics, and the other
generically parameterises a plane cubic plus a point. This phenomenon
happens routinely in the study of moduli spaces: we try to describe
a geometric object by specifying invariants, but often other objects
appear in the space as well.

We next show that the Hilbert scheme actually exists (i.e., that the
Hilbert functor is representable).
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