
TCC - HILBERT SCHEMES AND MODULI SPACES -
LECTURE 1

DIANE MACLAGAN

1.1. Introduction to the module. If you plan to attend the lectures
for this module, email me (D.Maclagan@warwick.ac.uk) to get on the
mailing list for this module. Further information about the module will
be posted on the webpage http://homepages.warwick.ac.uk/staff/

D.Maclagan/Classes/TCCModuli/TCCModuli.html.
The plan for the term is:

(1) Today, we cover what a moduli space is, some examples, and
the definition of a fine moduli space.

(2) Lectures 2 to 5 or 6 will cover the Hilbert scheme. We will go
into details of its construction, and properties.

(3) Lectures 6 or 7 to 8 will cover some other moduli spaces: the
moduli space of curves, and the moduli space of abelian varieties.

The focus will be on explicit constructions and examples. We will
not cover everything about moduli spaces (it’s only eight lectures!); in
particular, we will not go into any detail about stacks.

Assumed background will be as follows:

(1) An undergraduate algebraic geometry module at the level of
[Rei88], [Has07], or [SKKT00].

(2) Very beginnings of scheme theory ([Har77] Chapter II, sections
1 and 2 - the definition of an affine scheme).

(3) Comfort with basic commutative algebra of ideals in a polyno-
mial ring.

For those taking the module for credit, the default option is to do
complete one homework question per week. The target deadline is two
weeks after the lecture. I will aim to have questions for a variety of
backgrounds, and you are expected to choose a question at the right
level for you. Some homeworks can be replaced by a report on a research
paper on the topic of this module, with permission (this option is mostly
intended for more advanced PhD students).

1.2. First examples. Question: What is a moduli space?
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First answer: A moduli space is a space (variety/manifold/scheme/stack/. . . )
where each point corresponds to an (equivalence class of) object(s) being
considered.

Example 1. Projective space PnC = (Cn+1\{0})/v ∼ λv parameterises
lines through the origin in Cn+1. This gives a notion of lines being close.

Example 2. The Grassmannian Gr(r, n) parameterises r-dimensional
planes in Cn. This is a smooth variety (manifold) of dim r(n− r) with
affine charts Ar(n−r).

To see this, choose a basis v1, . . . ,vr for a subspace V , and write it
as the rows of an r × n matrix. For a concrete example, consider r = 2,
n = 4, and v1 = (1, 1, 1, 1) and v2 = (1, 2, 3, 4), so the matrix is(

1 1 1 1
1 2 3 4

)
.

Compute the row-reduced form of this matrix:(
1 0 −1 −2
0 1 2 3

)
.

The rows of the row reduced form give a unique representative for the
subspace V . If the first r × r submatrix is the identity matrix (so
was invertible in the original matrix) then the remaining r × (n − r)
submatrix can be anything, an all choices are different subspaces, so
this gives a copy of Ar(n−r). All choices of r × r submatrices give the
same result; there is nothing special about the order of the columns
in Gaussian elimination. This means that Gr(r, n) is a union of affine
cells. Check: the overlap maps are regular functions. This means that
Gr(r, n) is a smooth variety of dimension r(n− r).

To see projectivity, consider the map that takes the matrix to the
vector of its r× r minors (the determinant of r× r submatrices), viewed

as a point in P(n
r)−1 In our running example, this produces the vector

[1 : 2 : 3 : 1 : 2 : 1] ∈ P5,

where the coordinates are ordered 12, 13, 14, 23, 24, 34. For the affine
chart consisting of matrices of the form

(1)

(
1 0 a b
0 1 c d

)
we have the coordinates

[1 : c : d : −a : −b : ad− bc].
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The image of the map Gr(r, n) → P(n
r)−1 is closed, and cut out by

the Plücker relations. Writing pI for the coordinates of P(n
r)−1, where

I ⊆ {1, . . . , n} with |I| = r, the Plücker relations are∑
i∈J2

(−1)signpJ1∪ipJ2\i

for all J1, J2 ⊆ {1, . . . , n} with |J1| = r−1, and |J2| = r+1, and sign is
the number of switches needed to move i from J2 to J , keeping both in
ascending order. For example, when n = 4, J1 = {1}, and J2 = {2, 3, 4},
we have

p12p34 − p13p24 + p14p23.

We can check on the affine chart (1) that

1(ad− bc)− (c)(−b) + (d)(−a) = 0.

Check: If [pI ] ∈ P(n
r)−1 satisfies the Plücker relations there is V ⊆ Cn

with [pI ] as the vector of minors. The Plücker embedding can also be
described as follows. For V ⊆ Cn of dimension r, we have the inclusion

∧ri=1V ⊆ ∧ri=1Cn.

Note that ∧ri=1V is one-dimensional, so V determines a point in P(∧ri=1Cn) =

P(n
r)−1.
This describes Gr(r, n) as a projective variety.

One advantage of putting a projective variety description on the set
of all r-dimensional subspaces of Cn is that it puts a topology on this
set, so a way to decide if two subspaces are close, and gives a notion to
limits of families.

However a natural question is:
Question: (Why) is this the only option?
A priori there might be another parameter space for r-dimensional

subspaces of Cn that places a different topology on this set. Luckily we
will see that there is a reasonable notion of uniqueness in this case.

Another question is:
Question: The Grassmannian makes sense, with the same descrip-

tion, over any field. What about in more generality? Is there a unifying
way to do this?

1.3. A category theory interlude. Recall that a functor F from a
category C to a category D consists of functions F : Ob(C)→ Ob(D)
and F : Hom(C,C ′)→ Hom(F (C), F (C ′)) satisfying certain compati-
bility conditions. A contravariant functor has instead F : Hom(C,C ′)→
Hom(F (C ′), F (C)).
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The functor of points hX of a scheme X is the contravariant functor

Schemes→ Sets

that takes a scheme Y to the set of morphisms from Y to X:

Y 7→ hX(Y ) = MorSch(Y,X),

and a morphism φ : Y → Y ′ to the map of sets hX(Y ′)→ hX(Y ) given
by taking g ∈ hX(Y ′) = Mor(Y ′, X) to g ◦ φ.

A reference for this topic is Chapters I.4 and VI of [EH00]. Two key
facts about functors of points are:

(1) hX determines X. To start to see that this is reasonable, note
that if Y = Spec(K) for a field K, then as a topological space Y
is a point, so the set of morphisms is the set of K-valued points
of X. This follows from Yoneda’s lemma below.

(2) To know hX , it suffices to know its restriction to affine schemes,
so to know hX(Spec(R)) for R a commutative ring.

A functor h : Schemes → Sets is representable if h ∼= hX for some
scheme X.

There is at most one scheme X for which h ∼= hX . This is a conse-
quence of Yoneda’s lemma.

Recall that a natural transformation φ between two functors F : C →
D and G : C → D is the data of, for all objects C in C an element
φ(C) ∈ Hom(F (C), G(C)) with the property that for all objects C,C ′

in C and f ∈ Hom(C,C ′), the diagram

F (C)
φ(C)

//

F (f)

��

G(C)

G(f)

��
F (C ′)

φ(C′)
// G(C ′)

commutes. The map φ is an isomorphism if each φ(C) is an isomorphism.

Lemma 3 (Yoneda’s Lemma). Let C be a category and let X,X ′ be
objects of C.

(1) If F is any contravariant functor from C to the category of sets,
then there is a one-to-one correspondence between the natural
transformations from Hom(−, X) to F and the elements of
F (X). This correspondence is natural when both are regarded
as functors from C × Func(C, Sets) to Sets.

(2) If the functors Hom(−, X) and Hom(−, X ′) from C to the cate-
gory of sets are isomorphic, then X ∼= X ′.
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A natural transformation α from Hom(−, X) to F consists of the
data of, for each object C in C a function αC : Hom(C,X) → F (C)
satisfying the compatibility requirements. In particular, for C = X, we
get a function αX : Hom(X,X)→ F (X). The set Hom(X,X) always
contains the identity map id : X → X. The correspondence of part 1
takes α to αX(id : X → X).

To see that this is a bijection, note that given p ∈ F (X), we can
construct for all C ∈ C a function αp,C : Hom(C,X)→ F (C) by

αp,C(f) = F (f)(p) ∈ F (C)

for f ∈ Hom(C,X). We now check that this is a natural transformation.
Given g ∈ Hom(C,C ′), we have the diagram

Hom(C ′, X)
αp,C′

//

Hom(g,X)
��

F (C ′)

F (g)
��

Hom(C,X)αp,C

// F (C)

For f ∈ Hom(C ′, X), αp,C(f) = F (f)(p), so going across and down
we get F (g)(F (f)(p)) = F (g ◦ f)(p), while Hom(g,X)(f) = g circf ,
so going down and then across we get F (g ◦ f)(p) as well. Thus the
diagram commutes, so α is a natural transformation.

We then need to check that for all natural transformations α we have
ααX(id:X→X) = α, and for all p ∈ F (X) we have αp,X(id : X → X) = p.
(Exercise!)

For part 2, if α : Hom(−, X) → Hom(−, X ′) is an isomorphism
with inverse α′, then αX(id : X → X) ∈ Hom(X,X ′) has inverse
α′X′(id : X ′ → X ′) ∈ Hom(X ′, X), so X is isomorphic to X ′. (Check
details!)

1.4. Fine moduli spaces. A moduli problem asks to classify/parameterise
all families of objects of a particular type, up to some notion of equiva-
lence. For example, one might ask to classify lines through the origin in
An, with equivalence being identity, or one might ask to classify smooth
curves of genus g up to isomorphism.

A moduli functor is a functor Schemes→ Sets of the form:

B 7→ { a family of objects being parameterised over a base B}/ ∼
where ∼ is a notion of equivalence. A scheme X is a fine moduli space
for a moduli functor F if X represents F : F = hX . Part 2 of Yoneda’s
lemma says that fine moduli spaces, when they exist, are unique. In
this case we have an answer to the question “Why is this space the only
option for a moduli space?”.
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Example 4. For projective space we have the moduli functor Schemes→
Sets given by

B 7→ {subsheaves F ⊆ On+1
B that are locally summands of rank n}.

Restricted to affine schemes, so B = Spec(R), this becomes

R 7→ { submodules M ⊂ Rn+1 that are locally free direct summands of rank n}.

Example 5. For the Grassmannian we have the moduli functor Schemes→
Sets given by

B 7→ {subsheaves F ⊆ OnB that are locally free of rank r}.

Restricted to affine schemes, so B = Spec(R), this becomes

R 7→ { submodules M ⊆ Rn that are locally free direct summands of rank r}.

The property that a scheme X is a fine moduli space for a moduli
functor F is equivalent to the existence of a universal family π : U → X
with the property that whenever ψ : Y → B is a family of the required
form (so an element of F (B)), there is a unique morphism φ : B → X
such that

Y = U ×X B //

ψ
��

U

π
��

B
φ

// X

If we know that X represents F (so F ∼= Mor(−, X), we can take
π : U → X to be the element of F (X) corresponding to id : X → X ∈
Hom(X,X). Given a universal family π : U → X, for each B we get a
function αB : F (B)→ Mor(B,X), which in the cases we will consider
is a natural isomorphism.

Example 6. The universal family of P2 is

U = {([x0 : x1 : x2], (y0, y1, y2) : rk ( x0 x1 x2y0 y1 y2 ) = 1} ⊆ P2 × A3.

The map π : U → P2 is projection onto the first factor, and the fibre
over a point [x] ∈ P2 is the line through the origin spanned by x in A3

References

[EH00] David Eisenbud and Joe Harris, The geometry of schemes, Graduate
Texts in Mathematics, vol. 197, Springer-Verlag, New York, 2000.

[Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics,
No. 52, Springer-Verlag, New York-Heidelberg, 1977.

[Has07] Brendan Hassett, Introduction to algebraic geometry, Cambridge Univer-
sity Press, Cambridge, 2007.



TCC - HILBERT SCHEMES AND MODULI SPACES - LECTURE 1 7

[Rei88] Miles Reid, Undergraduate algebraic geometry, London Mathematical
Society Student Texts, vol. 12, Cambridge University Press, Cambridge,
1988.

[SKKT00] Karen E. Smith, Lauri Kahanpää, Pekka Kekäläinen, and William Traves,
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