TCC: TROPICAL GEOMETRY

HW 4

These questions are designed to help you make sense of the lectures. You do not need to write up solutions to all of them to get credit for this module; check with me if you are unsure whether what you have done suffices.
(1) Consider $X=V\left(x^{2}+t+1\right) \subseteq\left(\mathbb{C}\{\{t\}\}^{*}\right)$. Compute $\operatorname{trop}(X)$. Calculate $y \in X$ with $\operatorname{val}(y)=w$ for all $w \in \operatorname{trop}(X)$. Hint: To really do this explicitly, you should look at the proof that the field of Puiseux series is algebraically closed; that algorithmically constructs a root for any algebraic equations term by term. You can check your answer with (for example) Maple, using the puiseux package.
(2) Go back to Q4 of HW1 and draw the tropical curves using the regular subdivision trick. Compare this with your previous answers.
(3) Let $X=V\left(x^{2}+y^{2}+x+y\right) \subseteq\left(K^{*}\right)^{2}$. Consider the change of coordinates $\phi:\left(K^{*}\right)^{2} \rightarrow\left(K^{*}\right)^{2}$ given by $\phi(x)=x y, \phi(y)=x^{2} y^{3}$. Compute $\phi(X)$, and $\operatorname{trop}(\phi(X))$. Observe that this has the predicted relationship with $\operatorname{trop}(X)$.
(4) Show that if σ is a d-dimensional Γ-rational polyhedron in \mathbb{R}^{n}, then there is $A \in \operatorname{GL}(n, \mathbb{Z})$ with $A \sigma \subset \operatorname{span}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}\right)$, where \mathbf{e}_{i} is the i th standard basis vector. Conclude that if $X \subseteq\left(K^{*}\right)^{n}$ and $w \in \operatorname{trop}(X)$ then there is a monomial change of coordinates $\phi:\left(K^{*}\right)^{n} \rightarrow\left(K^{*}\right)^{n}$ for which $\operatorname{trop}(\phi)(w)$ is in the relative interior of a polyhedron of $\operatorname{trop}(X)$ contained in $\operatorname{span}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}\right)$.
(5) The definition of the star of a polyhedron σ in a polyhedral complex Σ depended on the choice of $w \in \operatorname{relint}(\sigma)$. Show that the fan $\operatorname{star}_{\Sigma}(\sigma)$ is in fact independent of the choice of w.
(6) You now know the definitions to do Q2 and Q3 from HW2.
(7) (This is a follow-up on the introductory lecture, and a warm-up for the lecture in a few weeks). Show that there is a unique conic through five general points in \mathbb{P}^{2}. Here "general" means "outside a Zariski-closed subset of $\left(\mathbb{P}^{2}\right)^{5}$. Can you describe this subset?

Concretely, this means that if $u_{1}, \ldots, u_{5} \in \mathbb{P}^{2}$ there is a unique (up to scaling) polynomial $F=a * x^{2}+b * x y+c * y^{2}+d * x z+e * y z+f * z^{2}$ with $F\left(u_{i}\right)=0$ for $1 \leq i \leq 5$.
(8) Install gfan and do some examples. Compare the gfan output with the examples you have already computed. Caveats: gfan uses the max convention (so the answers will be the negative of what you computed) and requires the input be homogeneous (so to compute the tropical variety $\operatorname{trop}(V(x+y+1)$) you need to homogenize, and ask gfan for $\operatorname{trop}(V(x+y+z))$). Gfan is available from: http://home.imf.au.dk/jensen/software/gfan/gfan.html.

