TCC: TROPICAL GEOMETRY

HW 2

(1) Verify (as much as possible) the fundamental theorem of tropical algebraic geometry and the structure theorem for $Y=V(f)$ for the following polynomials $f \in \mathbb{C}\{\{t\}\}\left[x^{ \pm 1}, y^{ \pm 1}\right]:$
(a) $f=3 x+t^{2} y+2 t$;
(b) $f=t x^{2}+x y+t y^{2}+x+y+t$;
(c) $f=x^{3}+y^{3}+1$.
(2) Let $Y=\operatorname{trop}(V(x+2 y+3 z+4)) \subseteq\left(\mathbb{C}^{*}\right)^{3}$. Compute $\operatorname{trop}(Y)$, and a polyhedral complex Σ with support $\operatorname{trop}(Y)$. Show that Σ is balanced if we put the weight one on each top-dimensional cone.
(3) Let Σ be the pure one-dimensional polyhedral fan with cones pos $((1,0))$, $\operatorname{pos}((0,1)), \operatorname{pos}((-1,1)), \operatorname{pos}((-1,-1))$. Find all weights $w \in \mathbb{N}^{4}$ for which Σ is balanced.
(4) Show that if K is an algebraically closed field with a valuation, then the residue field is algebraic closed.
(5) Show that the residue field of $\mathbb{C}\{\{t\}\}$ is \mathbb{C}. Show that the residue field of \mathbb{Q} with the p-adic valuation is $\mathbb{Z} / p \mathbb{Z}$.
(6) Let $f=8 x^{2}+x y+12 y^{2}+3 \in \mathbb{Q}\left[x^{ \pm 1}, y^{ \pm 1}\right]$. Compute all initial ideals $\mathrm{in}_{w}(I)$ of $I=\langle f\rangle$ as w varies when
(a) \mathbb{Q} has the trivial valuation,
(b) \mathbb{Q} has the 2-adic valuation, and
(c) \mathbb{Q} has the 3-adic valuation.

