TCC: TROPICAL GEOMETRY

HW 2

- (1) Verify (as much as possible) the fundamental theorem of tropical algebraic geometry and the structure theorem for Y = V(f) for the following polynomials $f \in \mathbb{C}\{\{t\}\}[x^{\pm 1}, y^{\pm 1}]$:
 - (a) $f = 3x + t^2y + 2t;$
 - (b) $f = tx^2 + xy + ty^2 + x + y + t;$
 - (c) $f = x^3 + y^3 + 1$.
- (2) Let $Y = \operatorname{trop}(V(x+2y+3z+4)) \subseteq (\mathbb{C}^*)^3$. Compute $\operatorname{trop}(Y)$, and a polyhedral complex Σ with support $\operatorname{trop}(Y)$. Show that Σ is balanced if we put the weight one on each top-dimensional cone.
- (3) Let Σ be the pure one-dimensional polyhedral fan with cones pos((1,0)), pos((0,1)), pos((-1,1)), pos((-1,-1)). Find all weights $w \in \mathbb{N}^4$ for which Σ is balanced.
- (4) Show that if K is an algebraically closed field with a valuation, then the residue field is algebraic closed.
- (5) Show that the residue field of $\mathbb{C}\{\{t\}\}\$ is \mathbb{C} . Show that the residue field of \mathbb{Q} with the *p*-adic valuation is $\mathbb{Z}/p\mathbb{Z}$.
- (6) Let $f = 8x^2 + xy + 12y^2 + 3 \in \mathbb{Q}[x^{\pm 1}, y^{\pm 1}]$. Compute all initial ideals $\operatorname{in}_w(I)$ of $I = \langle f \rangle$ as w varies when
 - (a) \mathbb{Q} has the trivial valuation,
 - (b) \mathbb{Q} has the 2-adic valuation, and
 - (c) \mathbb{Q} has the 3-adic valuation.