TCC : TROPICAL GEOMETRY

HW 1

(1) Show that if val : $K^{*} \rightarrow \mathbb{R}$ is a valuation, and $\operatorname{val}(a) \neq \operatorname{val}(b)$, then $\operatorname{val}(a+b)=$ $\min (\operatorname{val}(a), \operatorname{val}(b))$.
(2) Show that if K is an algebraically closed field with a nontrivial valuations val : $K^{*} \rightarrow \mathbb{R}$ (ie there is $a \in K^{*}$ with $\operatorname{val}(a) \neq 0$) then im val is dense in \mathbb{R}.
(3) Give formulas to solve the tropical cubic.
(4) Draw the tropical varieties $\operatorname{trop}(V(f))$ for the following $f \in \mathbb{C}\{\{t\}\}\left[x^{ \pm 1}, y^{ \pm 1}\right]$.
(a) $f=t^{3} x+\left(t+3 t^{2}+5 t^{4}\right) y+t^{-2}$;
(b) $f=\left(t^{-1}+1\right) x+\left(t^{2}-3 t^{3}\right) y+5 t^{4}$;
(c) $f=t^{3} x^{2}+x y+t y^{2}+t x+y+1$;
(d) $f=4 t^{4} x^{2}+\left(3 t+t^{3}\right) x y+(5+t) y^{2}+7 x+\left(-1+t^{3}\right) y+4 t$;
(e) $f=t x^{2}+4 x y-7 y^{2}+8$;
(f) $f=t^{6} x^{3}+x^{2} y+x y^{2}+t^{6} y^{3}+t^{3} x^{2}+t^{-1} x y+t^{3} y^{2}+t x+t y+1$.
(5) Let $f=a x+b y+c$, where $a, b, c \in \mathbb{C}\{\{t\}\}$. What are the possibilities for $\operatorname{trop}(V(f))$? How does this change if $\mathbb{C}\{\{t\}\}$ is changed to \mathbb{Q} with the p-adic valuation? Such tropical varieties are called tropical lines. (Harder) Repeat this question for $f=a x^{2}+b x y+c y^{2}+d x+e y+f$ (tropical quadrics).
(6) Show that any two general tropical lines in \mathbb{R}^{2} intersect in a unique point, and there is a unique tropical line containing any two general points in \mathbb{R}^{2}. What are the notions of genericity here?
(7) (Much much harder) Show that if f and g are two general polynomials in $K\left[x^{ \pm 1}, y^{ \pm 1}\right]$ of degrees d and e respectively then $\operatorname{trop}(V(f)) \cap \operatorname{trop}(V(g))$ consists of at most de points. This can be refined by adding multiplicities to make the intersection consist of exactly de points counted with multiplicity (and more generally to n general polynomials in n variables). This is the tropical Bézout theorem.

